Suppr超能文献

在硼掺杂金刚石电极上控制电化学木质素解聚卤化物化学

Controlling electrochemical lignin depolymerization halide chemistry at boron-doped diamond electrodes.

作者信息

Ngokpho Busarakham, Therdkatanyuphong Pattarawadee, Krukkratoke Panot, Khotavivattana Tanatorn, Boontawan Apichat, Ngamchuea Kamonwad

机构信息

School of Chemistry, Institute of Science, Suranaree University of Technology 111 University Avenue, Suranaree, Muang Nakhon Ratchasima 30000 Thailand

Institute of Research and Development, Suranaree University of Technology 111 University Avenue, Suranaree, Muang Nakhon Ratchasima 30000 Thailand.

出版信息

RSC Adv. 2025 Sep 12;15(40):33209-33223. doi: 10.1039/d5ra05524e. eCollection 2025 Sep 11.

Abstract

Lignin, a highly abundant yet underutilized biopolymer, holds significant potential as a renewable source of aromatic chemicals. Herein, we present a sustainable electrochemical approach for lignin valorization, in which oxidative pathways are tunable halide redox chemistry. Using boron-doped diamond electrodes, chosen for their wide potential window, high current efficiency, and fouling resistance, we elucidate the roles of halide (Cl, Br, I) and membrane configuration in governing electrochemical reactivity, selectivity, and surface stability. Cyclic voltammetry and extended electrolysis reveal distinct regimes: chloride and bromide mediate direct electrode-driven oxidation which suffers from surface passivation, whereas iodide enables solution-phase oxidation electrogenerated iodine species, minimizing fouling and delivering the highest yield of aromatic products. Product analysis confirms β-O-4 cleavage as the dominant depolymerization route, with vanillin as the primary product. Incorporation of a cation-exchange membrane substantially enhances yields and promotes deeper oxidative transformations, such as the formation of isovanillic and furan carboxylic acids. These findings define key parameters for achieving sustainable and tunable electrochemical lignin conversion without the need for sacrificial oxidants.

摘要

木质素是一种含量丰富但未得到充分利用的生物聚合物,作为一种可再生的芳香族化学品来源具有巨大潜力。在此,我们提出了一种可持续的电化学方法用于木质素增值,其中氧化途径可通过卤化物氧化还原化学进行调节。使用硼掺杂金刚石电极,因其宽电位窗口、高电流效率和抗污染性而被选用,我们阐明了卤化物(氯、溴、碘)和膜配置在控制电化学反应性、选择性和表面稳定性方面的作用。循环伏安法和长时间电解揭示了不同的区域:氯离子和溴离子介导直接的电极驱动氧化,这种氧化会受到表面钝化的影响,而碘离子则能实现溶液相氧化——通过电生成的碘物种,最大限度地减少污垢并提供最高产率的芳香族产物。产物分析证实β-O-4裂解是主要的解聚途径,香草醛是主要产物。加入阳离子交换膜可显著提高产率并促进更深层次的氧化转化,如异香草酸和呋喃羧酸的形成。这些发现确定了实现可持续且可调节的电化学木质素转化而无需牺牲性氧化剂的关键参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8418/12427176/37a4c817e346/d5ra05524e-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验