Ahmadi Khazar, Swegle Stephanie, Kashyap Sriranga, Bouyeure Antoine, Bandettini Peter, Axmacher Nikolai, Huber Laurentius Renzo
bioRxiv. 2025 Aug 29:2025.08.25.672075. doi: 10.1101/2025.08.25.672075.
Sub-millimeter resolution functional magnetic resonance imaging (fMRI) at ultra-high field (≥ 7T) has offered an unprecedented opportunity to probe mesoscopic computations at a columnar or laminar level. However, its application has been primarily restricted to the neocortex. Inferior brain regions, particularly the hippocampus (HC), are challenging targets for laminar fMRI. Recent developments in acquisition methods have shown the feasibility of laminar recordings in the HC using gradient-echo blood oxygenation level-dependent (BOLD) contrast. Nonetheless, the spatial specificity of the BOLD signal is compromised by the draining veins' bias. Cerebral blood volume (CBV)-sensitive sequences including vascular space occupancy (VASO) have emerged as a promising augmentation tool to capture the vein-free laminar activity. Yet, its feasibility in the HC is unclear and challenged by methodological constraints. Here, we optimized VASO to mitigate the macrovasculature contribution in HC. By evaluating a series of advanced acquisition strategies tailored to HC, we obtained improved VASO signal quality with minimal artifacts. The optimized protocol was further validated with an autobiographical memory task. Our findings show that combining the high detection power of gradient-echo BOLD with the vein-free VASO contrast allows for differentiation between neural activity-related BOLD signals and those biased by draining veins. These results demonstrate the feasibility of submillimeter VASO acquired with conventional 7T scanners in the HC to map the circuit-level mechanisms of memory retrieval across HC subfields, laying a foundation to investigate the microcircuitry of HC-driven complex cognitive functions and their alterations in neurodegeneration.
超高场(≥7T)下的亚毫米分辨率功能磁共振成像(fMRI)为在柱状或层状水平探测介观计算提供了前所未有的机会。然而,其应用主要局限于新皮层。大脑下部区域,尤其是海马体(HC),是层状fMRI的挑战性目标。采集方法的最新进展表明,使用梯度回波血氧水平依赖(BOLD)对比在HC中进行层状记录是可行的。尽管如此,BOLD信号的空间特异性受到引流静脉偏差的影响。包括血管空间占据(VASO)在内的脑血容量(CBV)敏感序列已成为一种有前景的增强工具,用于捕捉无静脉的层状活动。然而,其在HC中的可行性尚不清楚,且受到方法学限制的挑战。在此,我们优化了VASO以减轻HC中宏观血管的贡献。通过评估一系列针对HC量身定制的先进采集策略,我们以最小的伪影获得了改进的VASO信号质量。优化后的方案通过一项自传体记忆任务进一步得到验证。我们的研究结果表明,将梯度回波BOLD的高检测能力与无静脉的VASO对比相结合,可以区分与神经活动相关的BOLD信号和那些受引流静脉影响的信号。这些结果证明了使用传统7T扫描仪在HC中采集亚毫米VASO以绘制跨HC子区域记忆检索的电路水平机制的可行性,为研究HC驱动的复杂认知功能的微电路及其在神经退行性变中的改变奠定了基础。