Zhao Zhihe, Aberra Aman S, Opitz Alexander
Department of Biomedical Engineering, University of Minnesota, MN.
Department of Biological Sciences, Dartmouth College, NH.
bioRxiv. 2025 Sep 7:2025.09.02.673790. doi: 10.1101/2025.09.02.673790.
Transcranial magnetic stimulation (TMS) is a widely used non-invasive brain stimulation technique, but the neural circuits activated by TMS remain poorly understood. Previous modeling approaches have been limited to either simplified point-neuron networks or isolated single-cell models that lack synaptic connectivity.
To develop and validate a multiscale cortical circuit model that integrates morphologically-realistic neurons with accurate TMS-induced electric field distributions and to investigate mechanisms underlying cortical responses to stimulation.
We constructed a network model of a cortical column comprising 10,000 biophysically realistic neurons (excitatory pyramidal cells and inhibitory interneurons) across layers 2/3, 5, and 6 with over 10 million synaptic connections. The model incorporated thalamic and non-specific corticocortical inputs to generate physiological firing rates. TMS-induced electric fields were calculated using finite element modeling and coupled to individual neurons through the extracellular mechanism. We validated model predictions against experimental recordings of TMS-evoked local field potentials (LFPs) and multiunit activity.
The model reproduced key experimental observations including the dose-dependent N50 LFP component and multiphasic multi-unit responses, consisting of an (excitatory) increase followed by a (inhibitory) decrease in firing rates. The early excitatory response exhibited dual-peak dynamics reflecting distinct contributions from directly and indirectly activated neuronal populations, and the subsequent inhibitory phase reflected activation of feedback GABAergic circuits through both GABA and GABA conductances. Spatial analysis across 30 cortical columns distributed across the precentral gyrus revealed orientation-dependent evoked responses.
This validated multiscale model provides mechanistic insights into TMS-evoked cortical dynamics, demonstrating how direct neuronal activation cascades through synaptic networks to generate characteristic population responses. The framework establishes a computational platform for optimizing stimulation protocols in research and clinical applications.
经颅磁刺激(TMS)是一种广泛应用的非侵入性脑刺激技术,但TMS激活的神经回路仍知之甚少。以往的建模方法仅限于简化的点神经元网络或缺乏突触连接性的孤立单细胞模型。
开发并验证一个多尺度皮质回路模型,该模型将形态逼真的神经元与准确的TMS诱导电场分布相结合,并研究皮质对刺激反应的潜在机制。
我们构建了一个皮质柱网络模型,包含跨越第2/3层、第5层和第6层的10000个具有生物物理真实性的神经元(兴奋性锥体细胞和抑制性中间神经元),突触连接超过1000万个。该模型纳入了丘脑和非特异性皮质-皮质输入,以产生生理放电率。使用有限元建模计算TMS诱导的电场,并通过细胞外机制将其与单个神经元耦合。我们根据TMS诱发的局部场电位(LFP)和多单位活动的实验记录验证了模型预测。
该模型重现了关键的实验观察结果,包括剂量依赖性的N50 LFP成分和多相多单位反应,即放电率先(兴奋性)增加后(抑制性)降低。早期的兴奋性反应表现出双峰动力学,反映了直接和间接激活的神经元群体的不同贡献,随后的抑制阶段反映了通过GABA和GABA电导激活的反馈性GABA能回路。对中央前回分布的30个皮质柱进行的空间分析揭示了方向依赖性诱发反应。
这个经过验证的多尺度模型为TMS诱发的皮质动力学提供了机制性见解,展示了直接神经元激活如何通过突触网络级联以产生特征性群体反应。该框架建立了一个计算平台,用于优化研究和临床应用中的刺激方案。