Coyne Rose, Treese McKenzie, Chen Yen-Chung, Lake Cathleen, Tabi Ojong Besong, Rajesh Raghuvanshi, Hassan Huzaifa, Li Hua, Desplan Claude, Özel Mehmet Neset
Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Department of Biology, New York University, New York, NY 10003, USA.
bioRxiv. 2025 Sep 3:2025.09.01.673531. doi: 10.1101/2025.09.01.673531.
During neurogenesis, signaling molecules and transcription factors (TFs) pattern neural progenitors across space and time to generate the numerous cell types that constitute neural circuits. In postmitotic neurons, these identities are established and maintained by another class of TFs known as terminal selectors (tsTFs). However, it remains largely unclear how the tsTF combinations are specified in newborn neurons, and how they then coordinate the type-specific differentiation programs of each neuron. To investigate these regulatory mechanisms, we performed simultaneous single-cell RNA and ATAC sequencing experiments on the optic lobes and identified over 250 distinct cell types at four stages of their development. We characterized the common cis-regulatory features of neuronal enhancers and performed comprehensive inference of gene regulatory networks across cell types and stages. Our results reveal cooperative actions of pan-neuronal and tsTFs on cell type-specific enhancers, and that same effector genes are often regulated by different TF combinations in different cell types. During neurogenesis, patterning TFs are associated with different accessible enhancers before and after cell cycle exit, allowing them to be re-utilized as tsTFs independently from their earlier roles in progenitors. We show that expression of tsTFs in a variety of optic lobe neurons is mediated by lineage-specific enhancers, each patterned by different upstream mechanisms. Therefore, neuronal identity specification is a multi-step regulatory program wherein the same TFs can enact distinct regulatory codes at different steps and across cell types.
在神经发生过程中,信号分子和转录因子(TFs)在空间和时间上对神经祖细胞进行模式化,以生成构成神经回路的众多细胞类型。在有丝分裂后的神经元中,这些身份由另一类称为终末选择因子(tsTFs)的转录因子建立和维持。然而,在新生神经元中,tsTF组合是如何被指定的,以及它们随后如何协调每个神经元的类型特异性分化程序,在很大程度上仍不清楚。为了研究这些调控机制,我们对视叶进行了同步单细胞RNA和ATAC测序实验,并在其发育的四个阶段鉴定出超过250种不同的细胞类型。我们表征了神经元增强子的共同顺式调控特征,并对跨细胞类型和阶段的基因调控网络进行了全面推断。我们的结果揭示了泛神经元转录因子和终末选择因子在细胞类型特异性增强子上的协同作用,并且相同的效应基因在不同细胞类型中通常受不同的转录因子组合调控。在神经发生过程中,模式化转录因子在细胞周期退出前后与不同的可及增强子相关联,使它们能够独立于其在祖细胞中的早期作用而作为终末选择因子被重新利用。我们表明,多种视叶神经元中终末选择因子的表达由谱系特异性增强子介导,每个增强子由不同的上游机制进行模式化。因此,神经元身份指定是一个多步骤的调控程序,其中相同的转录因子可以在不同步骤和跨细胞类型中制定不同的调控代码。