Suppr超能文献

深度学习辅助评估全角膜内皮细胞活力的验证

Validation of a Deep Learning-Assisted Evaluation of Total Corneal Endothelial Cells Viability.

作者信息

Airaldi Matteo, Airaldi Filippo, Gao Zhuangzhi, Ruzza Alessandro, Parekh Mohit, Ponzin Diego, Kaye Stephen, Semeraro Francesco, Ferrari Stefano, Zheng Yalin, Romano Vito

机构信息

Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.

St Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.

出版信息

Transl Vis Sci Technol. 2025 Sep 2;14(9):20. doi: 10.1167/tvst.14.9.20.

Abstract

PURPOSE

To describe the validation of a novel automated analysis of preoperative pan-corneal endothelial cell viability.

METHODS

Preclinical experimental study. Dead endothelial cells and denuded areas of Descemet membrane of corneoscleral rims were stained with trypan blue (TB) 0.05%. Endothelial mortality was estimated by an experienced eye bank technician ("gold standard") and by deep learning-aided automated segmentation of TB-positive areas (TBPAs) on images of the stained corneas ("V-CHECK method"). V-CHECK mortality was calculated for the whole cornea and for concentric 2-mm rings. The agreement in the estimation of endothelial mortality between the two methods was assessed with Bland-Altman analysis and correlation tests.

RESULTS

Nineteen corneas deemed unsuitable for transplantation were used for the experiment. The automated V-CHECK method was able to accurately segment the corneal endothelium and the TBPAs. The gold standard and the V-CHECK method showed a strong positive correlation for all rings (Pearson's ρ, range 0.76-0.81, all P < 0.001). The V-CHECK method resulted in a higher average estimated endothelial mortality (mean difference range +6.5% to +9.5%).

CONCLUSIONS

The V-CHECK method enables reproducible estimation of endothelial cell viability in donor corneas. Incorporating this technique into the preoperative assessment of donor corneal tissues (in the eye bank and in the operating theater) can provide a reliable evaluation of endothelial health, thereby improving the consistency of tissue quality and further supporting optimal surgical results.

TRANSLATIONAL RELEVANCE

The V-CHECK deep learning-assisted computer vision protocol will allow surgeons and eye bank technicians to perform an independent, preoperative assessment of global corneal endothelial viability.

摘要

目的

描述一种新型术前全角膜内皮细胞活力自动分析方法的验证。

方法

临床前实验研究。用0.05%的台盼蓝(TB)对角膜缘的死亡内皮细胞和后弹力层剥脱区域进行染色。由经验丰富的眼库技术人员(“金标准”)以及通过对染色角膜图像上的TB阳性区域(TBPA)进行深度学习辅助自动分割(“V-CHECK方法”)来估计内皮细胞死亡率。计算整个角膜以及同心2毫米环的V-CHECK死亡率。通过Bland-Altman分析和相关性检验评估两种方法在内皮细胞死亡率估计方面的一致性。

结果

19个被认为不适合移植的角膜用于该实验。自动化的V-CHECK方法能够准确分割角膜内皮和TBPA。金标准和V-CHECK方法对所有环均显示出强正相关(Pearson相关系数ρ,范围为0.76 - 0.81,所有P < 0.001)。V-CHECK方法导致平均估计的内皮细胞死亡率更高(平均差异范围为 +6.5%至 +9.5%)。

结论

V-CHECK方法能够对供体角膜中的内皮细胞活力进行可重复的估计。将该技术纳入供体角膜组织的术前评估(在眼库和手术室中)可以提供对内皮细胞健康状况的可靠评估,从而提高组织质量的一致性,并进一步支持实现最佳手术效果。

转化相关性

V-CHECK深度学习辅助计算机视觉方案将使外科医生和眼库技术人员能够对全角膜内皮细胞活力进行独立的术前评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a199/12442935/43acf44b3eb8/tvst-14-9-20-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验