Suppr超能文献

一种为对鱼类听觉结构中声音诱发的运动模式进行断层成像而设计的驻波管状装置。

A standing wave tube-like setup designed for tomographic imaging of the sound-induced motion patterns in fish hearing structures.

作者信息

Maiditsch Isabelle P, Schulz-Mirbach Tanja, Heß Martin, Ladich Friedrich, Stampanoni Marco, Schlepütz Christian M

机构信息

Faculty of Biology, Zoology, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.

Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.

出版信息

BMC Biol. 2025 Sep 15;23(1):277. doi: 10.1186/s12915-025-02388-4.

Abstract

BACKGROUND

Modern bony fishes exhibit a considerable variation in the morphology of their hearing structures, and the morphological composition of these has been studied for centuries. However, the precise interaction and contribution of individual structures to hearing remains unclear in many species. Measurements of their motion in situ are challenging and pose the risk of damage or altering results through invasive intervention. Recent developments in time-resolved synchrotron-radiation-based tomography have opened up possibilities for non-destructive quantification of the micron-level motion patterns of the auditory system. However, the strict requirements for miniaturised acoustic environments compatible with tomographic imaging hinder the production of ideal and well-characterised sound fields. To address this issue, we present the design of a miniature standing wave tube-like setup equipped with the necessary sensors to tune and monitor the sound field in situ, thereby generating and recording the desired acoustic conditions during experiments.

RESULTS

By incorporating hydrophones into the tube of the standing-wave setup, we achieved a precise adjustment of the acoustic field within the tube at various frequencies. We generated and measured frequencies up to 2 kHz that fall within the relevant hearing spectrum of otophysan fish. The setup allows for the determination and adjustment of sound pressure levels during tomographic measurements, and phases can be regulated to achieve distinct differences between maximum (0° phase shift) and minimum (180° phase shift) sound pressure at the centre of the test tube.

CONCLUSIONS

We are able to visualise the motion of the peripheral auditory structures from the swim bladder to the Weberian ossicles and the otoliths (sagittae) in terms of maximum and minimum (sound-induced particle motion) sound pressure, respectively. This methodology has been successfully applied to various otophysan fish species and is demonstrated in the example of a glass catfish (Kryptopterus vitreolus). Our setup not only enhances our understanding of basic principles in fish bioacoustics but also sets a new standard for non-invasive, high-resolution imaging techniques in the field of aquatic sensory biology.

摘要

背景

现代硬骨鱼的听觉结构形态存在相当大的差异,几个世纪以来人们一直在研究其形态组成。然而,在许多物种中,各个结构对听力的确切相互作用和贡献仍不清楚。对其原位运动进行测量具有挑战性,并且存在因侵入性干预而损坏或改变结果的风险。基于时间分辨同步辐射断层扫描的最新进展为非侵入性定量听觉系统的微米级运动模式开辟了可能性。然而,与断层成像兼容的小型声学环境的严格要求阻碍了理想且特征明确的声场的产生。为了解决这个问题,我们展示了一种微型驻波管状装置的设计,该装置配备了必要的传感器,用于原位调节和监测声场,从而在实验过程中生成并记录所需的声学条件。

结果

通过将水听器纳入驻波装置的管道中,我们在不同频率下实现了管内声场的精确调节。我们生成并测量了高达2kHz的频率,这些频率属于骨鳔总目鱼类的相关听力范围。该装置允许在断层测量期间确定和调节声压水平,并且可以调节相位,以在试管中心实现最大(0°相移)和最小(180°相移)声压之间的明显差异。

结论

我们能够分别根据最大和最小(声致粒子运动)声压来可视化从鱼鳔到韦伯氏小骨和耳石(矢耳石)的外周听觉结构的运动。这种方法已成功应用于各种骨鳔总目鱼类,并在玻璃鲶鱼(Kryptopterus vitreolus)的例子中得到了证明。我们的装置不仅增强了我们对鱼类生物声学基本原理的理解,还为水生感官生物学领域的非侵入性高分辨率成像技术树立了新的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bf2/12439379/7298814f569f/12915_2025_2388_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验