Kolbinger Fiona R, El Nahhas Omar S M, Nackenhorst Maja Carina, Brostjan Christine, Eilenberg Wolf, Busch Albert, Kather Jakob Nikolas
Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine, University Hospital, Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany.
Else Kröner Fresenius Center for Digital Health (EKFZ), TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany.
Diagn Pathol. 2025 Sep 16;20(1):104. doi: 10.1186/s13000-025-01684-5.
Computational analysis of histopathological specimens holds promise in identifying biomarkers, elucidating disease mechanisms, and streamlining clinical diagnosis. However, the application of deep learning techniques in vascular pathology remains underexplored. Here, we present a comprehensive evaluation of deep learning-based approaches to analyze digital whole-slide images of abdominal aortic aneurysm samples from 369 patients from three European centers. Deep learning demonstrated robust performance in predicting inflammatory characteristics, particularly in the adventitia, as well as fibrosis grade and remaining elastic fibers in the tunica media from Hematoxylin and Eosin (HE)-stained slides (mean AUC > 0.70 in two external test cohorts). Models trained on Elastica van Gieson (EvG)-stained slides overall performed similar to models trained on HE-stained WSI for detection of calcification and fibrosis. For prediction of inflammatory parameters, HE-trained models performed considerably superior to EvG-trained models. Overall, this study represents the first comprehensive evaluation of computational pathology in vascular disease and has the potential to contribute to improved understanding of abdominal aortic aneurysm pathophysiology and personalization of treatment strategies, particularly when integrated with radiological phenotypes and clinical outcomes.
组织病理学标本的计算分析在识别生物标志物、阐明疾病机制和简化临床诊断方面具有前景。然而,深度学习技术在血管病理学中的应用仍未得到充分探索。在此,我们对基于深度学习的方法进行了全面评估,以分析来自三个欧洲中心的369例患者的腹主动脉瘤样本的数字全切片图像。深度学习在预测炎症特征方面表现出强大的性能,特别是在外膜,以及在苏木精和伊红(HE)染色切片中中膜的纤维化程度和剩余弹性纤维(在两个外部测试队列中平均AUC>0.70)。在弹性纤维染色(EvG)切片上训练的模型在检测钙化和纤维化方面总体表现与在HE染色全切片图像上训练的模型相似。对于炎症参数的预测,HE训练的模型比EvG训练的模型表现优越得多。总体而言,这项研究代表了对血管疾病计算病理学的首次全面评估,并且有可能有助于更好地理解腹主动脉瘤的病理生理学和治疗策略的个性化,特别是当与放射学表型和临床结果相结合时。