Huang Xiangxiang, Zhu Xiaolong, Gan Donglin, Yu Yuewen, Jiang Xuefeng, Wang Mingqian
School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China.
College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330031, PR China.
Mater Today Bio. 2025 Aug 25;34:102247. doi: 10.1016/j.mtbio.2025.102247. eCollection 2025 Oct.
The treatment of maxillofacial infections and wounds remains highly challenging due to the risk of facial deformities and the resulting psychological trauma. Furthermore, the irregular geometry and complex anatomical structures of maxillofacial wounds hinder effective clinical intervention. Therefore, the development of controllable and multifunctional composite hydrogels is highly desirable for promoting tissue regeneration, particularly in cases involving irregularly shaped tissue defects. In this study, we developed AIE-induced photothermal nanotrigger strategy for fabricating injectable multifunctional hydrogel zwitterionic wound dressing. This antibacterial composite zwitterionic hydrogel (TSD NPs@Gel) was synthesized using sulfobetaine methacrylate (SBMA) as the monomer, N,N'-methylenebisacrylamide (MBAA) as the crosslinker, and ammonium persulfate (APS) as the initiator. By incorporating aggregation-induced emission (AIE) nanoparticles (TSD NPs), we leveraged their excellent photothermal properties to achieve a "photothermal self-catalysis (PSC)" effect. Under light irradiation, TSD NPs generated heat, which accelerated the decomposition of APS into free radicals, thereby promoting the polymerization between the monomer and crosslinker. This innovative approach eliminated the need for traditional chemical catalysts and enabled the efficient preparation of the hydrogel. This hydrogel exhibits synergistic antibacterial effects through photothermal (PTT) and photodynamic (PDT) therapies. Under 660 nm laser irradiation, TSD NPs@Gel efficiently generates PTT and PDT effects, demonstrating significant bactericidal efficacy against both Gram-positive bacteria () and Gram-negative bacteria (). Additionally, mouse wound experiments show that the TSD nanoparticle-loaded hydrogel can effectively adhere to the facial skin of mice. The zwitterionic properties of the hydrogel provide excellent moisturizing and immunomodulatory effects, promoting blood vessel regeneration and new tissue growth, thereby demonstrating superior healing capabilities in mouse models of maxillofacial infections and traumas.
由于存在面部畸形风险及由此产生的心理创伤,颌面部感染和伤口的治疗仍然极具挑战性。此外,颌面部伤口不规则的几何形状和复杂的解剖结构阻碍了有效的临床干预。因此,开发可控且多功能的复合水凝胶对于促进组织再生非常必要,尤其是在涉及不规则形状组织缺损的情况下。在本研究中,我们开发了一种由聚集诱导发光(AIE)引发的光热纳米触发策略,用于制备可注射的多功能水凝胶两性离子伤口敷料。这种抗菌复合两性离子水凝胶(TSD NPs@Gel)以甲基丙烯酰氧乙基磺基甜菜碱(SBMA)为单体、N,N'-亚甲基双丙烯酰胺(MBAA)为交联剂、过硫酸铵(APS)为引发剂合成。通过加入聚集诱导发光(AIE)纳米颗粒(TSD NPs),我们利用其优异的光热性能实现了“光热自催化(PSC)”效应。在光照射下,TSD NPs产生热量,加速APS分解为自由基,从而促进单体与交联剂之间的聚合。这种创新方法无需传统化学催化剂,能够高效制备水凝胶。该水凝胶通过光热疗法(PTT)和光动力疗法(PDT)展现出协同抗菌效果。在660 nm激光照射下,TSD NPs@Gel能有效产生PTT和PDT效应,对革兰氏阳性菌( )和革兰氏阴性菌( )均显示出显著的杀菌功效。此外,小鼠伤口实验表明,负载TSD纳米颗粒的水凝胶能有效粘附于小鼠面部皮肤。水凝胶的两性离子特性具有出色的保湿和免疫调节作用,促进血管再生和新组织生长,从而在颌面部感染和创伤的小鼠模型中展现出卓越的愈合能力。