Dou Zhenglong, Fu Yan, Chen Shuiling, Maitz Manfred F, Zhang Wengtai, Li Keyun, Zheng Jingcheng, Zhang Zhen, Huang Nan, Yang Zhilu
Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
Shenzhen Clinical Medical School, Southern Medical University, Shenzhen, Guangdong, 518000, China.
Bioact Mater. 2025 Sep 2;54:509-530. doi: 10.1016/j.bioactmat.2025.08.038. eCollection 2025 Dec.
Rare-earth-free magnesium (Mg) alloy bioresorbable stent (BRS) exhibits significant potential in vascular intervention due to its exceptional biosafety. However, its susceptibility to corrosion complicates surface functionalization and renders existing coating strategies ineffective for degradation-remodeling kinetics, resulting in delayed re-endothelialization and excessive lumen loss. Herein, a hierarchical MgF/polyurethane (PU)/pitavastatin (PTV) coating system is constructed on Mg-Zn-Mn BRS using elastomeric PU as an intermediate layer. Studies confirm the PU layer effectively accommodates stent deformation, alleviates stress concentrations, and confines corrosion propagation triggered by deformation-induced MgF microcracks. The formed MgF layer concurrently decreases substrate reactivity, establishes stable interfaces with PU, and synergistically enhances the corrosion resistance. The surface PTV-loaded poly-L-lactic acid layer maintains sustained drug release through PU-mediated interfacial stability while serving as an initial corrosion barrier. evaluations demonstrate the MgF/PU/PTV-functionalized stent significantly suppresses neointimal hyperplasia in rabbit models while achieving synchronized degradation-remodeling kinetics. This hierarchical coating architecture, which synergistically integrates controlled drug elution with degradation modulation, provides a viable solution to clinical challenges of post-implant restenosis and vascular remodeling mismatch.
无稀土镁(Mg)合金生物可吸收支架(BRS)因其卓越的生物安全性在血管介入治疗中展现出巨大潜力。然而,其易腐蚀的特性使表面功能化变得复杂,且现有的涂层策略对降解重塑动力学无效,导致再内皮化延迟和管腔过度丢失。在此,使用弹性聚氨酯(PU)作为中间层,在Mg-Zn-Mn BRS上构建了一种分层的MgF/聚氨酯(PU)/匹伐他汀(PTV)涂层系统。研究证实,PU层有效适应支架变形,减轻应力集中,并限制由变形诱导的MgF微裂纹引发的腐蚀扩展。形成的MgF层同时降低基底反应性,与PU建立稳定界面,并协同增强耐腐蚀性。表面负载PTV的聚-L-乳酸层通过PU介导的界面稳定性维持药物持续释放,同时作为初始腐蚀屏障。评估表明,MgF/PU/PTV功能化支架在兔模型中显著抑制内膜增生,同时实现同步降解重塑动力学。这种将可控药物洗脱与降解调节协同整合的分层涂层结构,为植入后再狭窄和血管重塑不匹配的临床挑战提供了可行的解决方案。