Xu Dingjun, Fan Ziwei, Li Zhiyuan, Jia Mengxian, Fang Xiang, Shen Yizhe, Zhou Quan, Xie Changnan, Teng Honglin
Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.
Clin Interv Aging. 2025 Sep 11;20:1537-1548. doi: 10.2147/CIA.S537151. eCollection 2025.
Frailty and osteoporotic vertebral compression fractures (OVCFs) exhibit bidirectional causality, yet the impact of percutaneous kyphoplasty (PKP) on frailty progression remains unclear. This study developed machine learning (ML) models to predict post-PKP frailty and identify key predictors.
A retrospective cohort of 4599 PKP patients was categorized into frailty/non-frailty groups based on two-year follow-up. Variables included preoperative baseline data, imaging parameters (fracture number/segments, Genant classification, T2 hyperintensity), clinical characteristics (osteoporosis severity, Visual Analogue Scale scores, residual low back pain [LBP]), and surgical details. After data splitting (4:1 ratio), features were selected to train and optimize ML models, with performance evaluated via area under the curve (AUC). The ML model with the best performance was selected as our final model while using it for external validation. SHAP analysis determined predictor contributions.
Key features (residual LBP, Genant classification, etc) informed model development. Hyperparameter optimization enhanced performance, with Extreme Gradient Boost achieving superior prediction (AUC 0.950, 95% CI 0.934-0.965). The model still maintains a good performance in the external test set, with an AUC of 0.845 (95% CI 0.805-0.884). SHAP identified residual LBP, Genant classification, and postoperative recumbency duration as top predictors.
ML models effectively predict post-PKP frailty, highlighting modifiable risk factors. Standardized anti-osteoporosis therapy, residual LBP prevention, and reduced postoperative recumbency may mitigate frailty risk.
衰弱与骨质疏松性椎体压缩骨折(OVCF)存在双向因果关系,但经皮椎体后凸成形术(PKP)对衰弱进展的影响尚不清楚。本研究开发了机器学习(ML)模型来预测PKP术后的衰弱情况并识别关键预测因素。
对4599例PKP患者的回顾性队列进行了为期两年的随访,并根据随访结果分为衰弱/非衰弱组。变量包括术前基线数据、影像参数(骨折数量/节段、Genant分级、T2高信号)、临床特征(骨质疏松严重程度、视觉模拟评分、残余腰背痛[LBP])和手术细节。在数据拆分(4:1比例)后,选择特征来训练和优化ML模型,并通过曲线下面积(AUC)评估性能。选择性能最佳的ML模型作为最终模型,并用于外部验证。SHAP分析确定了预测因素的贡献。
关键特征(残余LBP、Genant分级等)为模型开发提供了依据。超参数优化提高了性能,极端梯度提升算法实现了卓越的预测效果(AUC为0.950,95%CI为0.934-0.965)。该模型在外部测试集中仍保持良好性能,AUC为0.845(95%CI为0.805-0.884)。SHAP分析确定残余LBP、Genant分级和术后卧床时间为主要预测因素。
ML模型可有效预测PKP术后的衰弱情况,突出了可改变的风险因素。标准化抗骨质疏松治疗、预防残余LBP以及缩短术后卧床时间可能会降低衰弱风险。