Su Jinzhao, Chen Jingbin, Wang Tianrong, Lin Tiansheng
Department of Nuclear Medicine, Fujian Medical University, Union Hospital, Fuzhou, Fujian Province, People's Republic of China.
Physiotherapy Department, Datian County General Hospital, Datian County, Fujian Province, People's Republic of China.
Clin Cosmet Investig Dermatol. 2025 Sep 11;18:2303-2314. doi: 10.2147/CCID.S542866. eCollection 2025.
Scars-including keloids, hypertrophic scars, and acne scars-pose substantial functional and psychosocial burdens that current empirical treatments often address by trial-and-error. Quantitative evidence now supports a precision framework. Validated clinical tools (eg, VSS, POSAS) and imaging modalities (3D photogrammetry; high-frequency ultrasound elastography) provide objective baselines, while emerging AI models deliver measurable gains: an automated scar-type classifier achieved precision 80.7%, recall 71.0%, AUC 0.846 for image-based categorization, and a clinical recurrence model for keloids reported AUC 0.889 with sensitivity 78.7% and specificity 86.8%, enabling earlier risk-stratified interventions and fewer ineffective treatment cycles in model-informed pathways. We synthesize cytokine/fibroblast signatures and genetic predisposition with multimodal (clinical-imaging-molecular) learning, detail validation challenges, and propose actionable safeguards (TRIPOD+AI-aligned reporting, internal-external validation, bias audits, SHAP-based interpretability, and federated learning to preserve privacy and improve generalizability). A pragmatic roadmap-including funding mechanisms, stakeholder roles, and a barrier-solution matrix-aims to accelerate translation toward predictive, preventive, and personalized scar care.
疤痕,包括瘢痕疙瘩、增生性疤痕和痤疮疤痕,会带来巨大的功能和心理社会负担,目前的经验性治疗往往通过反复试验来应对。现在,定量证据支持一个精准框架。经过验证的临床工具(如温哥华瘢痕量表、患者和观察者瘢痕评估量表)和成像方式(三维摄影测量法;高频超声弹性成像)提供了客观基线,而新兴的人工智能模型则带来了可衡量的成果:一个自动疤痕类型分类器在基于图像的分类中实现了80.7%的精度、71.0%的召回率、0.846的曲线下面积,并且一个瘢痕疙瘩临床复发模型报告的曲线下面积为0.889,灵敏度为78.7%,特异性为86.8%,从而在基于模型的路径中实现更早的风险分层干预和更少的无效治疗周期。我们通过多模态(临床-成像-分子)学习整合细胞因子/成纤维细胞特征和遗传易感性,详细阐述验证挑战,并提出可行的保障措施(符合TRIPOD标准+人工智能的报告、内部-外部验证、偏差审计、基于SHAP的可解释性以及联邦学习以保护隐私并提高通用性)。一个务实的路线图,包括资金机制、利益相关者角色和障碍-解决方案矩阵,旨在加速向预测性、预防性和个性化疤痕护理的转化。