Al Bannoud Mohamad, Martins Tiago Dias, de Lima Montalvão Silmara Aparecida, Annichino-Bizzacchi Joyce Maria, Filho Rubens Maciel, Maciel Maria Regina Wolf
Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Centro de Doenças Tromboembólicas (CCT), Centro de Hematologia e Hemoterapia (HEMOCENTRO), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
Ann Biomed Eng. 2025 Sep 18. doi: 10.1007/s10439-025-03837-5.
The solution of the system of equations that model the coagulation cascade enables the determination of thrombin production, which is related to blood clot formation and thrombosis. However, traditional models often overlook clinical and hematological variables due to modeling challenges or incomplete understanding. Mathematical models of blood coagulation cascade are typically generalist, presenting limited accuracy. This study aimed to incorporate patient-specific and hematological data into the kinetic parameters of the coagulation cascade to generate individualized thrombin curves and predict the recurrence of venous thromboembolism.
A sensitivity analysis identified the most influential kinetic parameters for thrombin production. These parameters were adjusted using a model hybrid combining an artificial neural network with a system of ordinary differential equations optimized via a genetic algorithm. The dataset is split into two subsets to prevent data leakage.
Eight kinetic rates were identified as the most sensitive, particularly those related to factor V activation and thrombin-antithrombin III complex formation. Factors such as anticoagulant use, smoking, pulmonary embolism, and factor V Leiden mutation significantly impacted the kinetic parameters. The model presented an AUC of 0.9941 and an accuracy of 0.9872.
The influence of these input variables on the kinetic parameters and thrombin production aligned with their known effects as risk factors reported in the literature. Adjusting the kinetic parameters individualized the model response, providing a clear cutoff point for thrombosis classification based on thrombin production. With further validation, this model could assist in diagnosing and prognosticating thrombosis and identifying new therapeutic targets to regulate thrombin production.
对凝血级联反应进行建模的方程组的解能够确定凝血酶的生成,而凝血酶生成与血凝块形成和血栓形成有关。然而,由于建模挑战或理解不完整,传统模型往往忽略临床和血液学变量。凝血级联反应的数学模型通常较为通用,准确性有限。本研究旨在将患者特异性和血液学数据纳入凝血级联反应的动力学参数,以生成个性化的凝血酶曲线并预测静脉血栓栓塞的复发。
通过敏感性分析确定对凝血酶生成最具影响力的动力学参数。使用一种模型混合方法调整这些参数,该方法将人工神经网络与通过遗传算法优化的常微分方程组相结合。数据集被分成两个子集以防止数据泄露。
确定了八个动力学速率最为敏感,特别是那些与因子V激活和凝血酶 - 抗凝血酶III复合物形成相关的速率。抗凝剂使用、吸烟、肺栓塞和因子V莱顿突变等因素对动力学参数有显著影响。该模型的曲线下面积为0.9941,准确率为0.9872。
这些输入变量对动力学参数和凝血酶生成的影响与文献中报道的它们作为危险因素的已知作用一致。调整动力学参数使模型反应个性化,为基于凝血酶生成的血栓形成分类提供了明确的分界点。经过进一步验证,该模型可协助诊断和预测血栓形成,并识别调节凝血酶生成的新治疗靶点。