Suppr超能文献

调控线粒体基因表达。

Manipulating mitochondrial gene expression.

作者信息

Dahal Drishan, Cruz-Zargoza Luis D, Rehling Peter

机构信息

Department of Cellular Biochemistry, 84922 University Medical Center Göttingen , Humboldtallee 23, D-37073, Göttingen, Germany.

Département de Biologie, Faculté des Sciences, Université de Sherbrooke, J1K 2R1, Sherbrooke, Canada.

出版信息

Biol Chem. 2025 Sep 15. doi: 10.1515/hsz-2025-0170.

Abstract

Mitochondria are essential for cellular metabolism, serving as the primary source of adenosine triphosphate (ATP). This energy is generated by the oxidative phosphorylation (OXPHOS) system located in the inner mitochondrial membrane. Impairments in this machinery are linked to serious human diseases, especially in tissues with high energy demands. Assembly of the OXPHOS system requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes. The mitochondrial DNA encodes for 13 protein components, which are synthesized by mitochondrial ribosomes and inserted into the inner membrane during translation. Despite progress, key aspects of how mitochondrial gene expression is regulated remain elusive, largely due to the organelle's limited genetic accessibility. However, emerging technologies now offer new tools to manipulate various stages of this process. In this review, we explore recent strategies that expand our ability to target mitochondria genetically.

摘要

线粒体对于细胞代谢至关重要,是三磷酸腺苷(ATP)的主要来源。这种能量由位于线粒体内膜的氧化磷酸化(OXPHOS)系统产生。该机制的损伤与严重的人类疾病相关,尤其是在能量需求高的组织中。OXPHOS系统的组装需要核基因组和线粒体基因组编码的基因的协调表达。线粒体DNA编码13种蛋白质成分,这些成分由线粒体核糖体合成,并在翻译过程中插入内膜。尽管取得了进展,但线粒体基因表达如何调控的关键方面仍然难以捉摸,这主要是由于该细胞器的遗传可及性有限。然而,新兴技术现在提供了新的工具来操纵这一过程的各个阶段。在这篇综述中,我们探讨了最近扩展我们对线粒体进行基因靶向能力的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验