Suppr超能文献

使用多视图级联网络在多参数磁共振成像上对脑和头皮血管进行全自动分割

Fully automated segmentation of brain and scalp blood vessels on multi-parametric magnetic resonance imaging using multi-view cascaded networks.

作者信息

Wu Songxiong, Huang Zilong, Wang Mingyu, Zeng Ping, Tan Biwen, Wang Panying, Huang Bin, Zhang Naiwen, Wu Nashan, Wu Ruodai, Chen Yong, Wu Guangyao, Chen Fuyong, Zhang Jian, Huang Bingsheng

机构信息

Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China; Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.

Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108584. doi: 10.1016/j.cmpb.2025.108584. Epub 2025 Jan 2.

Abstract

BACKGROUND AND OBJECTIVE

Neurosurgical navigation is a critical element of brain surgery, and accurate segmentation of brain and scalp blood vessels is crucial for surgical planning and treatment. However, conventional methods for segmenting blood vessels based on statistical or thresholding techniques have limitations. In recent years, deep learning-based methods have emerged as a promising solution for blood vessel segmentation, but the segmentation of small blood vessels and scalp blood vessels remains challenging. This study aimed to explore a solution to overcoming the challenges.

METHODS

This study proposes a multi-view cascaded deep learning network (MVPCNet) that combines multiple refinements, including multi-view learning, multi-parameter input, and a multi-view ensemble module. We evaluated the proposed method on a dataset of 155 patients, which included annotations for brain and scalp blood vessels. Five-fold cross-validation was conducted on the dataset to assess the performance of the network.

RESULTS

Ablation experiments showed that the proposed refinements in MVPCNet significantly improved the segmentation of small blood and low-contrast vessel performance, which segmented scalp blood vessels from the original images, increasing the Dice and the 95 % Hausdorf distance (HD), from 0.865 to 0.922 and from 1.28 mm to 0.47 mm, respectively, compared to the baseline model.

CONCLUSIONS

The proposed method in this study provided a fully automated and accurate segmentation of brain and scalp blood vessels, which is essential for neurosurgical navigation and has potential for clinical applications.

摘要

背景与目的

神经外科导航是脑外科手术的关键要素,准确分割脑和头皮血管对于手术规划和治疗至关重要。然而,基于统计或阈值技术的传统血管分割方法存在局限性。近年来,基于深度学习的方法已成为血管分割的一种有前景的解决方案,但小血管和头皮血管的分割仍然具有挑战性。本研究旨在探索克服这些挑战的解决方案。

方法

本研究提出了一种多视图级联深度学习网络(MVPCNet),该网络结合了多种细化方法,包括多视图学习、多参数输入和多视图集成模块。我们在一个包含155例患者的数据集上评估了所提出的方法,该数据集包括脑和头皮血管的标注。在该数据集上进行了五折交叉验证,以评估网络的性能。

结果

消融实验表明,MVPCNet中提出的细化方法显著提高了小血管和低对比度血管的分割性能,从原始图像中分割出头皮血管,与基线模型相比,Dice系数从0.865提高到0.922,95%豪斯多夫距离(HD)从1.28毫米降低到0.47毫米。

结论

本研究中提出的方法提供了一种全自动且准确的脑和头皮血管分割方法,这对于神经外科导航至关重要,并且具有临床应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验