Suppr超能文献

Edge-Selected Selenization of Subnanometer Amorphous NiFe Hydroxides for Efficient Alkaline Oxygen Evolution.

作者信息

Wang Teng, Wei Hao, Hu Renquan, Liang Nan-Nan, Sun Zhen, Qin Jiaqian, Luo Mingchuan, Yang Yong

机构信息

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.

Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China.

出版信息

ACS Nano. 2025 Sep 30;19(38):34017-34029. doi: 10.1021/acsnano.5c09887. Epub 2025 Sep 15.

Abstract

Crystalline-amorphous (c-a) heterointerfaces are a promising strategy to upgrade nanomaterials for catalysis. However, achieving precise control over c-a heterointerfaces at the subnanometer (subnm) scale for maximizing catalytic sites remains a formidable challenge. Here, we report a dual ligand-assisted synthesis strategy to engineer a hierarchically c-a heterostructure on subnanometer NiFe hydroxide, synergizing atomic-scale structural refinement with interfacial optimization for enhanced oxygen evolution reaction (OER) performance. Through the selective selenization of unstable edge sites in amorphous materials, the resulting crystalline NiSe@amorphous NiFe hydroxide catalysts, featuring edge-enriched NiSe domains and mismatched crystalline-amorphous heterointerfaces, deliver exceptional OER activity with an ultralow overpotential of 225 mV at 10 mA cm, surpassing most state-of-the-art NiFe-based catalysts. Spectroscopic techniques and theoretical calculations reveal that the crystalline NiSe outer layer modulates the d-band center of Ni/Fe active sites, enhances charge transfer kinetics, and optimizes oxygen intermediate adsorption, thereby accelerating the OER process. Furthermore, in the anion exchange membrane water electrolyzer (AEMWE), standout performance with an ultralow cell voltage of 1.78 V at a current density of 1.0 A cm is achieved. This work establishes a universal blueprint for integrating atomic-level structural design with interfacial engineering to unlock high-performance c-a heterocatalysts for energy conversion technologies.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验