Jun Ji-Su, Hong Sujin, Park Jun-Hong, Shin Jonghyeok, Lee Dae-Hee
Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
J Microbiol Biotechnol. 2025 Sep 16;35:e2507019. doi: 10.4014/jmb.2507.07019.
Cell-free protein synthesis (CFPS) has been used as a transformative technology in synthetic biology, providing a programmable, scalable, and automation-compatible platform for biological engineering. Freed from the limitations of cell viability and growth, CFPS enables rapid design iteration, precise control of reaction conditions, and high-throughput experimentation. Recent integration of CFPS with biofoundries-automated, high-throughput biological engineering platforms-has dramatically accelerated the Design-Build-Test-Learn cycle, facilitating applications such as enzyme engineering, metabolic pathway prototyping, biosensor development, and remote biomanufacturing. Advances in automation technologies, including liquid-handling robotics and digital microfluidics, have further enhanced the scalability and reproducibility of CFPS workflows. Additionally, coupling CFPS with machine learning has enabled predictive optimization of genetic constructs and biosynthetic systems. This review highlights the technological innovations driving the convergence of CFPS and automated biofoundries, outlining current capabilities, challenges, and future directions toward programmable, scalable, and distributed biological engineering.
无细胞蛋白质合成(CFPS)已成为合成生物学中的一项变革性技术,为生物工程提供了一个可编程、可扩展且与自动化兼容的平台。CFPS摆脱了细胞活力和生长的限制,能够实现快速的设计迭代、对反应条件的精确控制以及高通量实验。最近,CFPS与生物铸造厂(自动化、高通量生物工程平台)的整合极大地加速了“设计—构建—测试—学习”循环,推动了酶工程、代谢途径原型设计、生物传感器开发和远程生物制造等应用。包括液体处理机器人技术和数字微流控技术在内的自动化技术进步,进一步提高了CFPS工作流程的可扩展性和可重复性。此外,将CFPS与机器学习相结合能够对基因构建体和生物合成系统进行预测性优化。本综述重点介绍了推动CFPS与自动化生物铸造厂融合的技术创新,概述了当前的能力、挑战以及可编程、可扩展和分布式生物工程的未来发展方向。