Suppr超能文献

用于可扩展合成生物学的自动化和可编程无细胞系统,重点是生物铸造厂集成。

Automated and Programmable Cell-Free Systems for Scalable Synthetic Biology with a Focus on Biofoundry Integration.

作者信息

Jun Ji-Su, Hong Sujin, Park Jun-Hong, Shin Jonghyeok, Lee Dae-Hee

机构信息

Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.

Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.

出版信息

J Microbiol Biotechnol. 2025 Sep 16;35:e2507019. doi: 10.4014/jmb.2507.07019.

Abstract

Cell-free protein synthesis (CFPS) has been used as a transformative technology in synthetic biology, providing a programmable, scalable, and automation-compatible platform for biological engineering. Freed from the limitations of cell viability and growth, CFPS enables rapid design iteration, precise control of reaction conditions, and high-throughput experimentation. Recent integration of CFPS with biofoundries-automated, high-throughput biological engineering platforms-has dramatically accelerated the Design-Build-Test-Learn cycle, facilitating applications such as enzyme engineering, metabolic pathway prototyping, biosensor development, and remote biomanufacturing. Advances in automation technologies, including liquid-handling robotics and digital microfluidics, have further enhanced the scalability and reproducibility of CFPS workflows. Additionally, coupling CFPS with machine learning has enabled predictive optimization of genetic constructs and biosynthetic systems. This review highlights the technological innovations driving the convergence of CFPS and automated biofoundries, outlining current capabilities, challenges, and future directions toward programmable, scalable, and distributed biological engineering.

摘要

无细胞蛋白质合成(CFPS)已成为合成生物学中的一项变革性技术,为生物工程提供了一个可编程、可扩展且与自动化兼容的平台。CFPS摆脱了细胞活力和生长的限制,能够实现快速的设计迭代、对反应条件的精确控制以及高通量实验。最近,CFPS与生物铸造厂(自动化、高通量生物工程平台)的整合极大地加速了“设计—构建—测试—学习”循环,推动了酶工程、代谢途径原型设计、生物传感器开发和远程生物制造等应用。包括液体处理机器人技术和数字微流控技术在内的自动化技术进步,进一步提高了CFPS工作流程的可扩展性和可重复性。此外,将CFPS与机器学习相结合能够对基因构建体和生物合成系统进行预测性优化。本综述重点介绍了推动CFPS与自动化生物铸造厂融合的技术创新,概述了当前的能力、挑战以及可编程、可扩展和分布式生物工程的未来发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef5/12463565/042b54904a8f/jmb-35-e2507019-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验