Suppr超能文献

一种基于人工智能的预测模型在接受结直肠癌手术患者决策支持中的临床应用。

Clinical implementation of an AI-based prediction model for decision support for patients undergoing colorectal cancer surgery.

作者信息

Rosen Andreas Weinberger, Ose Ilze, Gögenur Mikail, Andersen Lars Peter Kloster, Bojesen Rasmus Dahlin, Vogelsang Rasmus Peuliche, Rose Martin Høyer, Steenfos Philip Wallentin, Hansen Lasse Bremholm, Spuur Helle Skadborg, Raben Ines, Skou Søren Thorgaard, Holm Ellen Astrid, Mortensen Karina, Kjær Trine, Eriksen Jens Ravn, Gögenur Ismail

机构信息

Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark.

Department of Anesthesiology, Zealand University Hospital, Køge, Denmark.

出版信息

Nat Med. 2025 Sep 18. doi: 10.1038/s41591-025-03942-x.

Abstract

Adverse outcomes after elective cancer surgery are a main contributor to decreased survival, poorer oncological outcomes and increased healthcare costs. Identifying high-risk patients and selecting interventions according to individual risk profiles in the perioperative period in cancer surgery is a challenge. Using real-world data on 18,403 patients with colorectal cancer from Danish national registries and consecutive patients from a single center, we developed, validated and implemented an artificial-intelligence-based risk prediction model in clinical practice as a decision support tool for personalized perioperative treatment. Personalized treatment pathways were designed according to the predicted risk of 1-year mortality with the intensity of interventions increasing with the predicted risk. The developed model had an area under the receiver operating characteristic curve of 0.79 in the validation set. Results from the nonrandomized before/after cohort study showed an incidence proportion of the comprehensive complication index >20 of 19.1% in the personalized treatment group versus 28.0% in the standard-of-care group, adjusted odds ratio of 0.63 (95% confidence interval, 0.42-0.92; P = 0.02). The incidence of any medical complication was 23.7% in the personalized treatment group and 37.3% in the standard-of-care group; odds ratio of 0.53 (95% confidence interval, 0.36-0.76; P < 0.001). According to the short-term health economic modeling, personalized perioperative treatment was cost effective. The study demonstrates a fully scalable registry-based approach for using readily available data in an artificial-intelligence-based decision support pipeline in clinical practice. Our results indicate that this specific approach can be a cost-effective strategy to improve key surgical clinical outcomes.

摘要

择期癌症手术后的不良结局是导致生存率降低、肿瘤学结局较差以及医疗成本增加的主要因素。在癌症手术围手术期识别高危患者并根据个体风险状况选择干预措施是一项挑战。利用丹麦国家登记处18403例结直肠癌患者的真实世界数据以及来自单一中心的连续患者数据,我们开发、验证并在临床实践中实施了一种基于人工智能的风险预测模型,作为个性化围手术期治疗的决策支持工具。根据预测的1年死亡率风险设计个性化治疗路径,干预强度随预测风险增加。在验证集中,所开发模型的受试者工作特征曲线下面积为0.79。非随机前后队列研究结果显示,个性化治疗组综合并发症指数>20的发生率为19.1%,而标准治疗组为28.0%,调整后的优势比为0.63(95%置信区间,0.42 - 0.92;P = 0.02)。个性化治疗组任何医疗并发症的发生率为23.7%,标准治疗组为37.3%;优势比为0.53(95%置信区间,0.36 - 0.76;P < 0.001)。根据短期健康经济模型,个性化围手术期治疗具有成本效益。该研究展示了一种完全可扩展的基于登记处的方法,用于在临床实践中基于人工智能的决策支持流程中使用现成数据。我们的结果表明,这种特定方法可能是改善关键手术临床结局的一种具有成本效益的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验