Tan Qinxuan, Kubicka Felix, Nickel Dominik, Weiland Elisabeth, Hamm Bernd, Geisel Dominik, Wagner Moritz, Walter-Rittel Thula C
Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany.
BMC Med Imaging. 2025 Sep 18;25(1):369. doi: 10.1186/s12880-025-01838-3.
Deep learning-accelerated single-shot turbo-spin-echo techniques (DL-HASTE) enable single-breath-hold T2-weighted abdominal imaging. However, studies evaluating the image quality of DL-HASTE with and without fat saturation (FS) remain limited. This study aimed to prospectively evaluate the technical feasibility and image quality of abdominal DL-HASTE with and without FS at 3 Tesla.
DL-HASTE of the upper abdomen was acquired with variable sequence parameters regarding FS, flip angle (FA) and field of view (FOV) in 10 healthy volunteers and 50 patients. DL-HASTE sequences were compared to clinical sequences (HASTE, HASTE-FS and T2-TSE-FS BLADE). Two radiologists independently assessed the sequences regarding scores of overall image quality, delineation of abdominal organs, artifacts and fat saturation using a Likert scale (range: 1-5).
Breath-hold time of DL-HASTE and DL-HASTE-FS was 21 ± 2 s with fixed FA and 20 ± 2 s with variable FA (p < 0.001), with no overall image quality difference (p > 0.05). DL-HASTE required a 10% larger FOV than DL-HASTE-FS to avoid aliasing artifacts from subcutaneous fat. Both DL-HASTE and DL-HASTE-FS had significantly higher overall image quality scores than standard HASTE acquisitions (DL-HASTE vs. HASTE: 4.8 ± 0.40 vs. 4.1 ± 0.50; DL-HASTE-FS vs. HASTE-FS: 4.6 ± 0.50 vs. 3.6 ± 0.60; p < 0.001). Compared to the T2-TSE-FS BLADE, DL-HASTE-FS provided higher overall image quality (4.6 ± 0.50 vs. 4.3 ± 0.63, p = 0.011). DL-HASTE achieved significant higher image quality (p = 0.006) and higher sharpness score of organs compared to DL-HASTE-FS (p < 0.001).
Deep learning-accelerated HASTE with and without fat saturation were both feasible at 3 Tesla and showed improved image quality compared to conventional sequences.
Not applicable.
深度学习加速的单次激发快速自旋回波技术(DL-HASTE)可实现屏气T2加权腹部成像。然而,评估有无脂肪饱和(FS)的DL-HASTE图像质量的研究仍然有限。本研究旨在前瞻性评估3特斯拉下有无FS的腹部DL-HASTE的技术可行性和图像质量。
在10名健康志愿者和50名患者中,采用关于FS、翻转角(FA)和视野(FOV)的可变序列参数获取上腹部的DL-HASTE。将DL-HASTE序列与临床序列(HASTE、HASTE-FS和T2-TSE-FS BLADE)进行比较。两名放射科医生使用李克特量表(范围:1-5)独立评估序列的整体图像质量、腹部器官的描绘、伪影和脂肪饱和分数。
DL-HASTE和DL-HASTE-FS在固定FA时的屏气时间为21±2秒,在可变FA时为20±2秒(p<0.001),整体图像质量无差异(p>0.05)。DL-HASTE需要比DL-HASTE-FS大10%的FOV以避免皮下脂肪的混叠伪影。DL-HASTE和DL-HASTE-FS的整体图像质量分数均显著高于标准HASTE采集(DL-HASTE与HASTE:4.8±0.40对4.1±0.50;DL-HASTE-FS与HASTE-FS:4.6±0.50对3.6±0.60;p<0.001)。与T2-TSE-FS BLADE相比,DL-HASTE-FS提供了更高的整体图像质量(4.6±0.50对4.3±0.63,p=0.011)。与DL-HASTE-FS相比,DL-HASTE实现了显著更高的图像质量(p=0.006)和更高的器官锐度分数(p<0.001)。
有无脂肪饱和的深度学习加速HASTE在3特斯拉下均可行,且与传统序列相比图像质量有所提高。
不适用。