Lin Sheng, Evans Kerrie, Hartley Dean, Morrison Scott, McDonald Stuart, Veidt Martin, Wang Gui
School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
Healthia Limited, Brisbane, QLD 4006, Australia.
Sensors (Basel). 2025 May 31;25(11):3481. doi: 10.3390/s25113481.
Wearable sensors are used in gait analysis to obtain spatiotemporal parameters, with gait events serving as critical markers for foot and lower limb movement. Summarizing detection methods is essential, as accurately identifying gait events and phases are key to deriving precise spatiotemporal parameters through wearable technology. However, a clear understanding of how these sensors, particularly angular velocity and acceleration signals within inertial measurement units, individually or collectively, contribute to the detection of gait events and gait phases is lacking. This review aims to summarize the current state of knowledge on the application for both gyroscopes, with particular emphasis on the role of angular velocity signals, and inertial measurement units with both angular velocity and acceleration signals in identifying gait events, gait phases, and calculating gait spatiotemporal parameters. Gyroscopes remain the primary tool for gait events detection, while inertia measurement units enhance reliability and enable spatiotemporal parameter estimation. Rule-based methods are suitable for controlled environments, whereas machine learning offers flexibility to analyze complex gait conditions. In addition, there is a lack of consensus on optimal sensor configurations for clinical applications. Future research should focus on standardizing sensor configurations and developing robust, adaptable detection methodologies suitable for different gait conditions.
可穿戴传感器用于步态分析以获取时空参数,步态事件是足部和下肢运动的关键标志。总结检测方法至关重要,因为准确识别步态事件和阶段是通过可穿戴技术得出精确时空参数的关键。然而,目前尚缺乏对这些传感器,尤其是惯性测量单元中的角速度和加速度信号如何单独或共同促进步态事件和步态阶段检测的清晰理解。本综述旨在总结关于陀螺仪应用的当前知识状态,特别强调角速度信号的作用,以及具有角速度和加速度信号的惯性测量单元在识别步态事件、步态阶段和计算步态时空参数方面的应用。陀螺仪仍然是检测步态事件的主要工具,而惯性测量单元提高了可靠性并能够进行时空参数估计。基于规则的方法适用于受控环境,而机器学习为分析复杂的步态状况提供了灵活性。此外,对于临床应用的最佳传感器配置缺乏共识。未来的研究应专注于标准化传感器配置,并开发适用于不同步态状况的强大、适应性强的检测方法。