Suppr超能文献

用于辅助中风步态的机器人脚踝外骨骼与肢体角度生物反馈:一项可行性研究

Robotic Ankle Exoskeleton and Limb Angle Biofeedback for Assisting Stroke Gait: A Feasibility Study.

作者信息

Herrin Kinsey R, Pan Yi-Tsen, Kesar Trisha M, Sawicki Gregory S, Young Aaron J

机构信息

George W. Woodruff School of Mechanical Engineering and the Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.

出版信息

IEEE Robot Autom Lett. 2025 Feb;10(2):1011-1017. doi: 10.1109/lra.2024.3518925. Epub 2024 Dec 16.

Abstract

Post-stroke gait is slow, energetically costly, and unstable. Rehabilitation is necessary to encourage, retrain, and assist proper gait mechanics in stroke survivors. Evidence indicates robotic ankle exoskeletons can improve gait outcomes in stroke survivors, however challenges remain with proper lower limb positioning for optimal receipt of the assistance. Biofeedback can be used to improve positioning of the limb for receipt of robotic ankle exoskeleton assistance. In this study, four stroke survivors used bilateral powered robotic ankle exoskeletons (Dephy Exoboots) and an innovative, custom-designed vibrotactile-audio biofeedback interface targeting trailing limb angle to test the hypotheses that each intervention alone improves gait outcomes over baseline, and when combined they improve outcomes over either intervention alone. Compared to baseline, we found increases in average paretic propulsive impulse during the biofeedback-only and exoskeleton-plus-biofeedback conditions. Biofeedback alone induced the greatest increase on average self-selected walking speed, and the combination of exoskeleton assistance and biofeedback increased speed more compared to the robotic exoskeleton-only condition. Our preliminary results indicate that biofeedback in combination with a robotic exoskeleton produces greater synergistic benefits on gait performance than the use of an exoskeleton alone.

摘要

中风后的步态缓慢、耗能高且不稳定。康复对于鼓励、重新训练和协助中风幸存者形成正确的步态力学是必要的。有证据表明,机器人脚踝外骨骼可以改善中风幸存者的步态结果,然而,在实现最佳辅助效果的下肢正确定位方面仍存在挑战。生物反馈可用于改善接受机器人脚踝外骨骼辅助时肢体的定位。在本研究中,四名中风幸存者使用了双侧动力机器人脚踝外骨骼(Dephy Exoboots)以及一种创新的、定制设计的针对后肢角度的振动触觉 - 音频生物反馈界面,以检验以下假设:每种干预措施单独使用时,与基线相比均可改善步态结果,并且当两者结合时,改善效果优于单独使用任何一种干预措施。与基线相比,我们发现在仅生物反馈和外骨骼加生物反馈的条件下,平均患侧推进冲量有所增加。仅生物反馈平均使自我选择的步行速度增加最多,并且与仅使用机器人外骨骼的情况相比,外骨骼辅助和生物反馈相结合使速度增加得更多。我们的初步结果表明,与单独使用外骨骼相比,生物反馈与机器人外骨骼相结合对步态性能产生更大的协同益处。

相似文献

8
Virtual reality for stroke rehabilitation.用于中风康复的虚拟现实技术。
Cochrane Database Syst Rev. 2025 Jun 20;6:CD008349. doi: 10.1002/14651858.CD008349.pub5.

本文引用的文献

1
Interpreting the CPASS Trial: Do Not Shift Motor Therapy to the Subacute Phase.解读CPASS试验:不要将运动疗法推迟到亚急性期。
Neurorehabil Neural Repair. 2023 Jan;37(1):76-79. doi: 10.1177/15459683221143461. Epub 2022 Dec 28.
3
Optimizing Exoskeleton Assistance for Faster Self-Selected Walking.优化外骨骼辅助以实现更快的自主行走。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:786-795. doi: 10.1109/TNSRE.2021.3074154. Epub 2021 May 3.
10
Real-time biofeedback device for gait rehabilitation of post-stroke patients.用于中风后患者步态康复的实时生物反馈装置。
Biomed Eng Lett. 2017 Jun 7;7(4):287-298. doi: 10.1007/s13534-017-0036-1. eCollection 2017 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验