Herrin Kinsey R, Pan Yi-Tsen, Kesar Trisha M, Sawicki Gregory S, Young Aaron J
George W. Woodruff School of Mechanical Engineering and the Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
IEEE Robot Autom Lett. 2025 Feb;10(2):1011-1017. doi: 10.1109/lra.2024.3518925. Epub 2024 Dec 16.
Post-stroke gait is slow, energetically costly, and unstable. Rehabilitation is necessary to encourage, retrain, and assist proper gait mechanics in stroke survivors. Evidence indicates robotic ankle exoskeletons can improve gait outcomes in stroke survivors, however challenges remain with proper lower limb positioning for optimal receipt of the assistance. Biofeedback can be used to improve positioning of the limb for receipt of robotic ankle exoskeleton assistance. In this study, four stroke survivors used bilateral powered robotic ankle exoskeletons (Dephy Exoboots) and an innovative, custom-designed vibrotactile-audio biofeedback interface targeting trailing limb angle to test the hypotheses that each intervention alone improves gait outcomes over baseline, and when combined they improve outcomes over either intervention alone. Compared to baseline, we found increases in average paretic propulsive impulse during the biofeedback-only and exoskeleton-plus-biofeedback conditions. Biofeedback alone induced the greatest increase on average self-selected walking speed, and the combination of exoskeleton assistance and biofeedback increased speed more compared to the robotic exoskeleton-only condition. Our preliminary results indicate that biofeedback in combination with a robotic exoskeleton produces greater synergistic benefits on gait performance than the use of an exoskeleton alone.
中风后的步态缓慢、耗能高且不稳定。康复对于鼓励、重新训练和协助中风幸存者形成正确的步态力学是必要的。有证据表明,机器人脚踝外骨骼可以改善中风幸存者的步态结果,然而,在实现最佳辅助效果的下肢正确定位方面仍存在挑战。生物反馈可用于改善接受机器人脚踝外骨骼辅助时肢体的定位。在本研究中,四名中风幸存者使用了双侧动力机器人脚踝外骨骼(Dephy Exoboots)以及一种创新的、定制设计的针对后肢角度的振动触觉 - 音频生物反馈界面,以检验以下假设:每种干预措施单独使用时,与基线相比均可改善步态结果,并且当两者结合时,改善效果优于单独使用任何一种干预措施。与基线相比,我们发现在仅生物反馈和外骨骼加生物反馈的条件下,平均患侧推进冲量有所增加。仅生物反馈平均使自我选择的步行速度增加最多,并且与仅使用机器人外骨骼的情况相比,外骨骼辅助和生物反馈相结合使速度增加得更多。我们的初步结果表明,与单独使用外骨骼相比,生物反馈与机器人外骨骼相结合对步态性能产生更大的协同益处。