Häntze Hartmut, Xu Lina, Rattunde Maximilian Nikolas, Donle Leonhard, Dorfner Felix J, Hering Alessa, Nawabi Jawed, Adams Lisa C, Bressem Keno K
Department of Radiology, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, GA, The Netherlands.
Eur Radiol Exp. 2025 Sep 19;9(1):93. doi: 10.1186/s41747-025-00626-6.
Annotating new classes in MRI images is time-consuming. Refining presegmented structures can accelerate this process. Many target classes lacking in MRI are supported by computed tomography (CT) models, but translating MRI to synthetic CT images is challenging. We demonstrate that CT segmentation models can create accurate MRI presegmentations, with or without image inversion.
We retrospectively investigated the performance of two CT-trained models on MRI images: a general multiclass model (TotalSegmentator); and a specialized renal tumor model trained in-house. Both models were applied to 100 T1-weighted (T1w) and 100 T2-weighted fat-saturated (T2wfs) MRI sequences from 100 patients (50 male). Segmentation quality was evaluated on both raw and intensity-inverted sequences using Dice similarity coefficients (DSC), with reference annotations comprising manual kidney tumor annotations and automatically generated segmentations for 24 abdominal structures.
Segmentation quality varied by MRI sequence and anatomical structure. Both models accurately segmented kidneys in T2wfs sequences without preprocessing (TotalSegmentator DSC 0.60), but TotalSegmentator failed to segment blood vessels and muscles. In T1w sequences, intensity inversion significantly improved TotalSegmentator performance, increasing the mean DSC across 24 structures from 0.04 to 0.56 (p < 0.001). Kidney tumor segmentation demonstrated poor performance in T2wfs sequences regardless of preprocessing. In T1w sequences, inversion improved tumor segmentation DSC from 0.04 to 0.42 (p < 0.001).
CT-trained models can generalize to MRI when supported by image augmentation. Inversion preprocessing enabled segmentation of renal cell carcinoma in T1w MRI using a CT-trained model. CT models might be transferable to the MRI domain.
CT-trained artificial intelligence models can be adapted for MRI segmentation using simple preprocessing, potentially reducing manual annotation efforts and accelerating the development of AI-assisted tools for MRI analysis in research and future clinical practice.
CT segmentation models can create presegmentations for many structures in MRI scans. T1w MRI scans require an additional inversion step before segmenting with a CT model. Results were consistent for a large multiclass model (i.e., TotalSegmentator) and a smaller model for renal cell carcinoma.
在MRI图像中注释新类别很耗时。细化预分割结构可以加快这一过程。许多MRI中缺乏的目标类别可由计算机断层扫描(CT)模型支持,但将MRI转换为合成CT图像具有挑战性。我们证明CT分割模型可以创建准确的MRI预分割,无论是否进行图像反转。
我们回顾性研究了两个在CT上训练的模型在MRI图像上的性能:一个通用的多类模型(TotalSegmentator);以及一个内部训练的专门的肾肿瘤模型。两个模型都应用于来自100名患者(50名男性)的100个T1加权(T1w)和100个T2加权脂肪饱和(T2wfs)MRI序列。使用Dice相似系数(DSC)在原始序列和强度反转序列上评估分割质量,参考注释包括手动肾肿瘤注释和24个腹部结构的自动生成分割。
分割质量因MRI序列和解剖结构而异。两个模型在未经预处理的T2wfs序列中都能准确分割肾脏(TotalSegmentator DSC为0.60),但TotalSegmentator未能分割血管和肌肉。在T1w序列中,强度反转显著提高了TotalSegmentator的性能,使24个结构的平均DSC从0.04提高到0.56(p<0.001)。无论是否进行预处理,肾肿瘤分割在T2wfs序列中的表现都很差。在T1w序列中,反转使肿瘤分割DSC从0.04提高到0.42(p<0.001)。
在图像增强的支持下,CT训练的模型可以推广到MRI。反转预处理使得使用CT训练的模型能够在T1w MRI中分割肾细胞癌。CT模型可能可转移到MRI领域。
CT训练的人工智能模型可以通过简单的预处理适用于MRI分割,这可能会减少人工注释工作,并加速研究和未来临床实践中用于MRI分析的人工智能辅助工具的开发。
CT分割模型可以为MRI扫描中的许多结构创建预分割。在使用CT模型进行分割之前,T1w MRI扫描需要额外的反转步骤。对于大型多类模型(即TotalSegmentator)和较小的肾细胞癌模型,结果是一致的。