Yin Xiaolin, Gao Qinmei, Wang Feng, Liu Weihao, Yu Shixuan, Zhong Shuixiu, Feng Jiahui, Bai Rui, Luo Yiting, Chen Liangbi, Dai Xiaojun, Liang Manzhong
Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China.
Front Plant Sci. 2025 Sep 4;16:1628305. doi: 10.3389/fpls.2025.1628305. eCollection 2025.
Rice ( L.) is one of the world's most vital staple crops, providing food for over 50% of the global population. As a salt-sensitive crop, rice is susceptible to damage from soil-soluble salt stress, which can severely reduce rice yield. Here, we aimed to elucidate the molecular mechanisms underlying salt tolerance in rice. Investigation of MADS-box genes involved in abiotic stress responses in rice led to the identification of . To investigate the role of in salt stress tolerance, we generated its knockout mutant and overexpression lines in Nipponbare (Nip). Phenotypic analysis of T-generation knockout () mutants revealed altered panicle morphology and significant reductions in seed-setting rate, panicle length, grain number per panicle, and 1000-grain weight. Under salt stress, both during seed germination and at the three-leaf stage, knockout mutants exhibited markedly inhibited growth, whereas overexpression () lines maintained normal germination and development. At the three-leaf stage, knockout mutants showed significantly lower survival rates following salt treatment and subsequent recovery. Physiological and biochemical assays demonstrated that, compared with wild-type (WT) plants, mutants exhibited substantially decreased catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities as well as reduced proline (Pro) content. Conversely, compared with WT plants, 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining intensities as well as malondialdehyde (MDA) content were significantly higher in mutants and significantly lower in lines. Transcriptome analysis of WT and mutants under salt stress conditions, followed by Gene Ontology (GO) enrichment of the identified differentially expressed genes (DEGs), revealed the enrichment of genes encoding protein kinases, CATs, and transcription factors. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several key pathways including carbon metabolism, amino acid biosynthesis, metabolic pathways, glycolysis/gluconeogenesis, lipid metabolism, and plant hormone signal transduction. Furthermore, weighted gene co-expression network analysis (WGCNA) of the DEGs demonstrated that enhances salt tolerance by upregulating antioxidant-related genes, activating antioxidant enzymes, and reducing oxidative damage. Our results conclusively show that improves salt tolerance in rice.
水稻(Oryza sativa L.)是世界上最重要的主食作物之一,为全球超过50%的人口提供食物。作为一种对盐敏感的作物,水稻易受土壤可溶性盐胁迫的损害,这会严重降低水稻产量。在此,我们旨在阐明水稻耐盐性的分子机制。对参与水稻非生物胁迫响应的MADS-box基因进行研究后鉴定出了[具体基因名称未给出]。为了研究[具体基因名称未给出]在耐盐胁迫中的作用,我们在日本晴(Nip)中构建了其敲除突变体和过表达株系。对T代[具体基因名称未给出]敲除([具体基因名称未给出] - KO)突变体的表型分析显示,其穗形态发生改变,结实率、穗长、每穗粒数和千粒重显著降低。在盐胁迫下,无论是在种子萌发期间还是三叶期,[具体基因名称未给出]敲除突变体的生长均受到明显抑制,而过表达([具体基因名称未给出] - OX)株系保持正常的萌发和发育。在三叶期,敲除突变体在盐处理及后续恢复后的存活率显著降低。生理生化分析表明,与野生型(WT)植株相比,[具体基因名称未给出]突变体的过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性大幅降低,脯氨酸(Pro)含量也降低。相反,与WT植株相比,[具体基因名称未给出]突变体中的3,3'-二氨基联苯胺(DAB)和氮蓝四唑(NBT)染色强度以及丙二醛(MDA)含量显著更高,而过表达株系中则显著更低。对盐胁迫条件下WT和[具体基因名称未给出]突变体进行转录组分析,随后对鉴定出的差异表达基因(DEG)进行基因本体(GO)富集分析,结果显示编码蛋白激酶、CAT和转录因子的基因显著富集。京都基因与基因组百科全书(KEGG)富集分析确定了几个关键途径,包括碳代谢、氨基酸生物合成、代谢途径、糖酵解/糖异生、脂质代谢和植物激素信号转导。此外,对DEG进行加权基因共表达网络分析(WGCNA)表明,[具体基因名称未给出]通过上调抗氧化相关基因、激活抗氧化酶和减少氧化损伤来增强耐盐性。我们的结果确凿地表明,[具体基因名称未给出]提高了水稻的耐盐性。