Einalou Zahra, Dadgostar Mehrdad, Wu Kuan-Cheng, Martin Alyssa, Robinson Mitchell B, Renna Marco, Qu Jason Z, Sunwoo John, Franceschini Maria Angela
Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States.
Massachusetts General Hospital, Harvard Medical School, Department of Anesthesia, Critical Care and Pain Medicine, Boston, Massachusetts, United States.
J Biomed Opt. 2025 Feb;30(Suppl 2):S23913. doi: 10.1117/1.JBO.30.S2.S23913. Epub 2025 Sep 19.
Continuous blood pressure (BP) monitoring is crucial for maintaining hemodynamic stability and complication prevention. Near-infrared spectroscopy photoplethysmography (NIRS-PPG) offers a noninvasive alternative to arterial lines (A-line) for continuous BP monitoring.
We aim to assess whether a wearable NIRS-PPG device (FlexNIRS) can estimate mean arterial pressure (MAP) using linear and Gaussian process regression (GPR) models.
NIRS-PPG signals were recorded bilaterally in 10 patients undergoing carotid endarterectomy. Subject-specific linear regression and GPR models predicted MAP based on heart rate and peak features of the NIRS-PPG signal. A-line readings served as the reference.
All models achieved strong performance with . The two-feature GPR model improved accuracy ( ), whereas adding a third feature further enhanced performance ( ). Improvements in , mean absolute error, and root mean squared error were statistically significant. The highest accuracy was observed contralateral to the surgical site using the 2.8-cm source-detector separation.
This preliminary study supports the feasibility of noninvasive MAP estimation using NIRS-PPG and machine learning. The approach may provide a practical alternative for BP monitoring after A-line removal in postoperative and intensive care unit settings.
连续血压(BP)监测对于维持血流动力学稳定性和预防并发症至关重要。近红外光谱光电容积脉搏波描记法(NIRS-PPG)为连续血压监测提供了一种替代动脉内导管(A线)的非侵入性方法。
我们旨在评估一种可穿戴的NIRS-PPG设备(FlexNIRS)是否能够使用线性和高斯过程回归(GPR)模型来估计平均动脉压(MAP)。
对10例接受颈动脉内膜切除术的患者双侧记录NIRS-PPG信号。基于心率和NIRS-PPG信号的峰值特征,针对个体的线性回归和GPR模型预测MAP。A线读数作为参考。
所有模型均表现出良好的性能, 。双特征GPR模型提高了准确性( ),而添加第三个特征进一步提升了性能( )。 、平均绝对误差和均方根误差的改善具有统计学意义。使用2.8厘米源探测器间距时,在手术部位对侧观察到最高的准确性。
这项初步研究支持了使用NIRS-PPG和机器学习进行无创MAP估计的可行性。该方法可能为术后和重症监护病房环境中移除A线后的血压监测提供一种实用的替代方法。