Suppr超能文献

基于可穿戴式手指光电容积脉搏波的血糖监测仪设计

Design of a Wearable Finger PPG-Based Blood Glucose Monitor.

作者信息

Wang Mutian, Liu Xuelei, Han Wenyi, Lin Xinyu, Chen Xin, Zhao Shun, Zhuang Zhiqiang, Zhang Leian, Su Peiqiang

机构信息

School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China.

Shandong Huiyu Auto Parts Co., Ltd., Binzhou, 251702, Shandong, China.

出版信息

Ann Biomed Eng. 2025 Jul 20. doi: 10.1007/s10439-025-03809-9.

Abstract

PURPOSE

Blood glucose monitoring is crucial for controlling diabetes. However, traditional fingertip pricking methods usually cause discomfort to patients and cannot achieve continuous monitoring. To overcome these limitations, we developed a novel, non-invasive, and wearable device for continuous blood glucose levels (BGLs) monitoring.

METHODS

The device is equipped with a pulse oximeter, which has a visible wavelength (660 nm) and an infrared wavelength (880 nm) light-emitting diode (LED) to acquire finger photoplethysmography (PPG). The BGLs from PPG were estimated using a multi-layer perceptron (MLP) machine learning model, which was trained on dual-wavelength PPG intensity pertaining to various BGLs. We also analyzed the effect of MLP training parameters on the accuracy of blood glucose prediction.

RESULTS

Experimental results indicate that 99.33% of the BGLs estimated from PPG lie in the clinically acceptable Clarke error grid (CEG) regions A and B, suggesting a high potential for accurate blood glucose monitoring with minimal clinical risk. Additionally, our 24-hour monitoring test further validates the device's capability to effectively track daily glucose fluctuations, which verifies its reliability in daily blood glucose monitoring.

CONCLUSION

In conclusion, our novel wearable device for continuous blood glucose monitoring has shown feasibility and effectiveness. By leveraging PPG signals and a machine learning model, we have developed a promising alternative to traditional invasive blood glucose monitoring methods. This device has the potential to significantly improve the quality of life for diabetes patients by providing a more comfortable and continuous monitoring option.

摘要

目的

血糖监测对于控制糖尿病至关重要。然而,传统的指尖采血方法通常会给患者带来不适,且无法实现连续监测。为克服这些局限性,我们开发了一种新型的、非侵入性的可穿戴设备,用于连续监测血糖水平(BGL)。

方法

该设备配备了脉搏血氧仪,其具有一个可见波长(660纳米)和一个红外波长(880纳米)的发光二极管(LED),用于采集手指光电容积脉搏波描记图(PPG)。使用多层感知器(MLP)机器学习模型根据PPG估计BGL,该模型在与各种BGL相关的双波长PPG强度上进行训练。我们还分析了MLP训练参数对血糖预测准确性的影响。

结果

实验结果表明,根据PPG估计的BGL中有99.33%落在临床可接受的克拉克误差网格(CEG)的A区和B区,这表明该设备在临床风险最小的情况下进行准确血糖监测具有很高的潜力。此外,我们的24小时监测测试进一步验证了该设备有效跟踪每日血糖波动的能力,这证实了其在日常血糖监测中的可靠性。

结论

总之,我们用于连续血糖监测的新型可穿戴设备已显示出可行性和有效性。通过利用PPG信号和机器学习模型,我们开发了一种有望替代传统侵入性血糖监测方法的技术。该设备有可能通过提供更舒适和连续的监测选项,显著提高糖尿病患者的生活质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验