Suppr超能文献

一种基于脂质代谢和溶酶体的风险特征,用于子宫体子宫内膜癌的预后和免疫反应预测。

A lipid metabolism and lysosome-based risk signature for prognosis and immune response prediction in uterine corpus endometrial carcinoma.

作者信息

Zhu Yuanyuan, Yang Pusheng, Zhang Shu

机构信息

Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.

出版信息

Front Genet. 2025 Sep 8;16:1594682. doi: 10.3389/fgene.2025.1594682. eCollection 2025.

Abstract

BACKGROUND

The dysregulation of genes related to lipid metabolism and lysosomal function has been reported to significantly contribute to tumor progression. In this study, we systematically explored the roles played by lipid metabolism and lysosomes in uterine corpus endometrial carcinoma (UCEC), aiming to identify potential biomarkers for predicting prognosis and immune checkpoint therapy efficacy.

METHODS

Genes associated with lipid metabolism and lysosomal function were retrieved from the MSigDB and GO databases. Transcriptomic data and clinical information of patients were acquired from The Cancer Genome Atlas database. A prognostic model was constructed using consensus clustering, univariate Cox regression, and LASSO regression. ROC curves, Kaplan-Meier plots, and calibration curves were employed to assess the predictive capacity of the model, while ssGSEA, TIDE, and IPS were used to evaluate the response of high- and low-risk groups to immunotherapy. Drug sensitivity was assessed with the "oncoPredict" R package. Given that we identified a strong association between and CD8 T-cell infiltration, this gene was selected for loss-of-function assays in UCEC cells, including the evaluation of their proliferative, invasive, and migratory potential.

RESULTS

An eight-gene (, , , , , , , and ) risk signature based on lipid metabolism and lysosomal function was constructed to distinguish high-risk and low-risk UCEC patients. Subsequent analyses showed that patients classified as high risk had higher TIDE scores, whereas those categorized as low risk exhibited higher MSI scores and greater levels of CD8 T-cell infiltration. All evidence suggested that patients in the low-risk group displayed greater immunogenicity and sensitivity to both immunotherapy and chemotherapy. Analysis using the TIMER database indicated that among the eight risk genes, showed the strongest association with CD8 T-cell immune infiltration in UCEC. Cytological experiments confirmed that the knockdown of effectively suppressed the proliferation and motility of endometrial cancer cells.

CONCLUSION

We constructed a risk prognostic model for UCEC based on a combination of lysosomal- and lipid metabolism-related genes. Our findings highlight the oncogenic potential of PLAAT1 in endometrial cancer and provide novel insights into the diagnosis and therapy of this cancer type.

摘要

背景

据报道,与脂质代谢和溶酶体功能相关的基因失调对肿瘤进展有显著影响。在本研究中,我们系统地探讨了脂质代谢和溶酶体在子宫内膜癌(UCEC)中的作用,旨在确定预测预后和免疫检查点治疗疗效的潜在生物标志物。

方法

从MSigDB和GO数据库中检索与脂质代谢和溶酶体功能相关的基因。从癌症基因组图谱数据库获取患者的转录组数据和临床信息。使用一致性聚类、单变量Cox回归和LASSO回归构建预后模型。采用ROC曲线、Kaplan-Meier图和校准曲线评估模型的预测能力,同时使用ssGSEA、TIDE和IPS评估高风险和低风险组对免疫治疗的反应。使用“oncoPredict”R包评估药物敏感性。鉴于我们发现[基因名称]与CD8 T细胞浸润之间存在强关联,选择该基因在UCEC细胞中进行功能丧失试验,包括评估其增殖、侵袭和迁移潜力。

结果

构建了一个基于脂质代谢和溶酶体功能的八基因([基因名称1]、[基因名称2]、[基因名称3]、[基因名称4]、[基因名称5]、[基因名称6]、[基因名称7]和[基因名称8])风险特征,以区分高风险和低风险的UCEC患者。随后的分析表明,分类为高风险的患者TIDE评分较高,而分类为低风险的患者MSI评分较高且CD8 T细胞浸润水平较高。所有证据表明,低风险组患者对免疫治疗和化疗均表现出更高的免疫原性和敏感性。使用TIMER数据库进行的分析表明,在这八个风险基因中,[基因名称]与UCEC中CD8 T细胞免疫浸润的关联最强。细胞学实验证实,敲低[基因名称]可有效抑制子宫内膜癌细胞的增殖和运动能力。

结论

我们基于溶酶体和脂质代谢相关基因构建了UCEC的风险预后模型。我们的研究结果突出了PLAAT1在子宫内膜癌中的致癌潜力,并为这种癌症类型的诊断和治疗提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da9/12450679/aa6a82611648/fgene-16-1594682-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验