Flynn Emma L, Shah Riya, Dunn Ian, Aggarwal Rishal, Koes David Ryan
Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States.
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States.
Front Bioinform. 2025 Sep 8;5:1628800. doi: 10.3389/fbinf.2025.1628800. eCollection 2025.
Structure-based drug design (SBDD) is enhanced by machine learning (ML) to improve both virtual screening and design. Despite advances in ML tools for both strategies, screening remains bounded by time and computational cost, while generative models frequently produce invalid and synthetically inaccessible molecules. Screening time can be improved with pharmacophore search, which quickly identifies ligands in a database that match a pharmacophore query. In this work, we introduce PharmacoForge, a diffusion model for generating 3D pharmacophores conditioned on a protein pocket. Generated pharmacophore queries identify ligands that are guaranteed to be valid, commercially available molecules. We evaluate PharmacoForge against automated pharmacophore generation methods using the LIT-PCBA benchmark and ligand generative models through a docking-based evaluation framework. We further assess pharmacophore quality through a retrospective screening of the DUD-E dataset. PharmacoForge surpasses other pharmacophore generation methods in the LIT-PCBA benchmark, and resulting ligands from pharmacophore queries performed similarly to generated ligands when docking to DUD-E targets and had lower strain energies compared to generated ligands.
基于结构的药物设计(SBDD)通过机器学习(ML)得到增强,以改进虚拟筛选和设计。尽管用于这两种策略的ML工具取得了进展,但筛选仍然受时间和计算成本的限制,而生成模型经常产生无效且合成上难以获得的分子。药效团搜索可以改善筛选时间,它能快速在数据库中识别与药效团查询匹配的配体。在这项工作中,我们引入了PharmacoForge,这是一种基于蛋白质口袋生成3D药效团的扩散模型。生成的药效团查询可识别出保证是有效且可商购的配体分子。我们使用LIT-PCBA基准对PharmacoForge与自动药效团生成方法进行评估,并通过基于对接的评估框架对配体生成模型进行评估。我们还通过对DUD-E数据集的回顾性筛选来评估药效团质量。在LIT-PCBA基准中,PharmacoForge超过了其他药效团生成方法,当与DUD-E靶点对接时,药效团查询产生的配体表现与生成的配体相似,并且与生成的配体相比具有更低的应变能。