Suppr超能文献

用于通用量子计算的低开销横向容错。

Low-overhead transversal fault tolerance for universal quantum computation.

作者信息

Zhou Hengyun, Zhao Chen, Cain Madelyn, Bluvstein Dolev, Maskara Nishad, Duckering Casey, Hu Hong-Ye, Wang Sheng-Tao, Kubica Aleksander, Lukin Mikhail D

机构信息

QuEra Computing, Boston, MA, US.

Department of Physics, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2025 Oct;646(8084):303-308. doi: 10.1038/s41586-025-09543-5. Epub 2025 Sep 24.

Abstract

Fast, reliable logical operations are essential for realizing useful quantum computers. By redundantly encoding logical qubits into many physical qubits and using syndrome measurements to detect and correct errors, we can achieve low logical error rates. However, for many practical quantum error correction codes such as the surface code, owing to syndrome measurement errors, standard constructions require multiple extraction rounds-of the order of the code distance d-for fault-tolerant computation, particularly considering fault-tolerant state preparation. Here we show that logical operations can be performed fault-tolerantly with only a constant number of extraction rounds for a broad class of quantum error correction codes, including the surface code with magic state inputs and feedforward, to achieve 'transversal algorithmic fault tolerance'. Through the combination of transversal operations and new strategies for correlated decoding, despite only having access to partial syndrome information, we prove that the deviation from the ideal logical measurement distribution can be made exponentially small in the distance, even if the instantaneous quantum state cannot be made close to a logical codeword because of measurement errors. We supplement this proof with circuit-level simulations in a range of relevant settings, demonstrating the fault tolerance and competitive performance of our approach. Our work sheds new light on the theory of quantum fault tolerance and has the potential to reduce the space-time cost of practical fault-tolerant quantum computation by over an order of magnitude.

摘要

快速、可靠的逻辑运算对于实现实用的量子计算机至关重要。通过将逻辑量子比特冗余编码到多个物理量子比特中,并使用校验子测量来检测和纠正错误,我们可以实现低逻辑错误率。然而,对于许多实际的量子纠错码,如表面码,由于校验子测量错误,标准构造需要进行多次提取轮次——与码距d的量级相当——用于容错计算,特别是考虑到容错态制备。在这里,我们表明,对于包括具有魔态输入和前馈的表面码在内的一大类量子纠错码,仅需恒定数量的提取轮次就可以容错地执行逻辑运算,以实现“横向算法容错”。通过横向操作和相关解码新策略的结合,尽管只能获取部分校验子信息,但我们证明,即使由于测量错误,瞬时量子态无法接近逻辑码字,与理想逻辑测量分布的偏差在码距上也可以指数级地减小。我们在一系列相关设置中通过电路级模拟对这一证明进行了补充,展示了我们方法的容错性和竞争性能。我们的工作为量子容错理论提供了新的见解,并有可能将实际容错量子计算的时空成本降低一个数量级以上。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验