Will Matthias, Korka Betina, Stenner Max-Philipp
Leibniz Institute for Neurobiology, Magdeburg, Germany.
Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
Eur J Neurosci. 2025 Sep;62(6):e70260. doi: 10.1111/ejn.70260.
Humans rely on cognitive strategies to adapt upcoming movement in response to past movement error, for example, by strategic reaiming. We show that strategy-based motor adaptation engages premovement and postmovement neural oscillations in the beta frequency band. We recorded electroencephalography (EEG) while healthy participants (N = 27) performed center-out reaching movements to move a cursor on a screen through a visual target. In some trials (17%), the cursor was unexpectedly rotated relative to the hand. This rotation was either repeated in the next trial, so that participants could reaim their reach in that trial (2× condition), or the rotation was switched off, preventing reaiming (1× condition; within-subject design). We found a stronger decrease in postmovement beta rebound (PMBR) after the first rotation in the 2× condition, compared to the 1× condition, despite similar movement kinematics. This indicates a role of PMBR in strategic reaiming, and replicates findings from our previous study (Korka et al., 2023). Combining data from the two studies (total N = 52), we found that reaiming accuracy was associated with premovement beta power in the second rotated trial, but not with the PMBR decrease at the end of the first rotated trial. Our results indicate that the decrease in PMBR upon movement error signals the need to adjust a cognitive strategy. Such a role may explain how reduced PMBR in Parkinson's disease could impair discovery of cognitive strategies for movement. Premovement beta power, on the other hand, may be involved in the specification of an aiming strategy following erroneous movement.
人类依靠认知策略来根据过去的运动误差调整即将进行的运动,例如通过策略性重新瞄准。我们发现基于策略的运动适应会在运动前和运动后的β频段神经振荡中发挥作用。我们记录了健康参与者(N = 27)在通过视觉目标在屏幕上移动光标进行中心向外伸展运动时的脑电图(EEG)。在某些试验(17%)中,光标相对于手部意外旋转。这种旋转要么在下一次试验中重复,以便参与者能够在该试验中重新瞄准伸展(2×条件),要么旋转被关闭,阻止重新瞄准(1×条件;受试者内设计)。我们发现,尽管运动运动学相似,但在2×条件下,第一次旋转后运动后β反弹(PMBR)的下降比1×条件下更强。这表明PMBR在策略性重新瞄准中发挥作用,并复制了我们之前研究(Korka等人,2023年)的结果。结合两项研究的数据(总N = 52),我们发现重新瞄准准确性与第二次旋转试验中的运动前β功率相关,但与第一次旋转试验结束时的PMBR下降无关。我们的结果表明,运动误差时PMBR的下降表明需要调整认知策略。这样的作用可能解释了帕金森病中PMBR降低如何损害运动认知策略的发现。另一方面,运动前β功率可能参与错误运动后瞄准策略的制定。