Suppr超能文献

Y家族Dpo4 DNA聚合酶小指结构域中的残基相互作用,限制越过8-氧代鸟嘌呤损伤的合成。

Residues in the little finger domain of the Y-family Dpo4 DNA polymerase communicate to restrict synthesis past 8-oxoguanine lesions.

作者信息

Disha Sadia Sinty, Punchipatabendi Thushani I, Kaszubowski Joseph D, Liang Biqing, Pata Janice D, Trakselis Michael A

机构信息

Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, United States.

Department of Biomedical Sciences, University at Albany, Albany, NY 12222,United States.

出版信息

Nucleic Acids Res. 2025 Sep 23;53(18). doi: 10.1093/nar/gkaf950.

Abstract

Endogenous reactive oxygen species are responsible for abundant 8-oxo-7,8-dihydroguanine (8-oxoG) lesion formation in all three domains of life. In the archaeal Saccharolobus solfataricus(Sso), a specialized translesion synthesis (TLS) polymerase, SsoDpo4, is recruited to bypass lesions when the high-fidelity polymerase stalls. Previous studies have found that SsoDpo4 can accurately bypass 8-oxoG lesions with deoxycytosine and then efficiently extend three nucleotides beyond the lesion to the +3 position. Here, we have mutated several arginines within the little finger (LF) domain that track along the phosphate backbone near the active site and tested their extension ability and DNA binding properties. Mutation of two key residues, R332 or R336, to alanine relieves +3 intermediate accumulation, resulting in more efficient full-length extension. Interestingly, the wild-type enzyme binds progressively weaker downstream of a bypassed 8-oxoG lesion, indicating decreased binding stability after lesion bypass. X-ray crystallography has captured these mutants on the +3 extended primer/8-oxoG template to structurally characterize how these LF residues communicate to restrict downstream synthesis past 8-oxoG. Our results offer mechanistic and structural insights into how TLS polymerases restrict downstream synthesis past a lesion by sensing backbone distortions and altering domain conformations to limit catalysis and destabilize binding.

摘要

内源性活性氧会导致在生命的三个域中形成大量的8-氧代-7,8-二氢鸟嘌呤(8-氧代鸟嘌呤,8-oxoG)损伤。在古菌嗜热栖热放线菌(Saccharolobus solfataricus,Sso)中,当高保真聚合酶停滞时,一种特殊的跨损伤合成(TLS)聚合酶SsoDpo4会被招募来绕过损伤。先前的研究发现,SsoDpo4可以准确地用脱氧胞嘧啶绕过8-氧代鸟嘌呤损伤,然后有效地在损伤位点下游延伸三个核苷酸至+3位置。在这里,我们对沿着活性位点附近的磷酸骨架排列的小指(LF)结构域内的几个精氨酸进行了突变,并测试了它们的延伸能力和DNA结合特性。将两个关键残基R332或R336突变为丙氨酸可减轻+3中间体的积累,从而实现更有效的全长延伸。有趣的是,野生型酶在绕过的8-氧代鸟嘌呤损伤下游的结合逐渐减弱,表明损伤绕过后结合稳定性降低。X射线晶体学已捕获了这些处于+3延伸引物/8-氧代鸟嘌呤模板上的突变体,以从结构上表征这些LF残基如何相互作用以限制越过8-氧代鸟嘌呤的下游合成。我们的结果为TLS聚合酶如何通过感知骨架扭曲和改变结构域构象来限制越过损伤的下游合成以限制催化作用并破坏结合稳定性提供了机制和结构方面的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16c/12464819/309c0071ad96/gkaf950figgra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验