Dash Banaja P, Hermann Andreas
Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany.
Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18147 Rostock, Germany.
Cells. 2025 Sep 10;14(18):1417. doi: 10.3390/cells14181417.
Amyotrophic lateral sclerosis (ALS) is a fatal type of neurodegenerative disease marked by progressive and selective degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. However, the intricate molecular mechanisms underlying primary cell death pathways, including ferroptosis-related genes (FRGs) mediating MN dysfunction in ALS, remain elusive. Ferroptosis, a novel type of iron-dependent cell death with the accumulation of lipid peroxidation products, stands distinct from apoptotic-related stress and other cell death mechanisms. Although growing advances have highlighted the role of iron deposition, apoptosis and alteration of antioxidant systems in ALS pathogenesis, there is little data at the systems biology level. Therefore, we performed a comprehensive bioinformatic analysis of bulk RNA-sequencing (RNA-seq) data by systematically comparing the gene expression profiles from iPSC-derived MNs of ALS patients and healthy controls using our datasets as well as from the GEO database to reveal the role of ferroptosis-related gene alterations in ALS, especially in selective MN vulnerability of () mutations. In this study, we first identified differentially expressed genes (DEGs) between mutant and healthy controls. Subsequently, the crossover genes between DEGs and FRGs were selected as differentially expressed ferroptosis-related genes (DEFRGs). Functional enrichment and protein-protein interaction (PPI) analysis of DEFRGs identified that DNA damage, stress response and extra cellular matrix (ECM) were the most significantly dysregulated functions/pathways in -ALS causing mutations compared to healthy controls. While GSEA analysis showed enrichment of genes associated with apoptosis, the degree of ferroptosis and iron ion homeostasis/response to iron of MNs was lower. Altogether, our findings may contribute to a better understanding of the relevant role of cell death pathways underlying selective vulnerability of MNs to neurodegeneration in -ALS pathophysiology.
肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,其特征是脊髓、脑干和运动皮层中的运动神经元(MNs)进行性和选择性退化。然而,包括介导ALS中MN功能障碍的铁死亡相关基因(FRGs)在内的原发性细胞死亡途径的复杂分子机制仍然难以捉摸。铁死亡是一种新型的铁依赖性细胞死亡,伴有脂质过氧化产物的积累,与凋亡相关应激和其他细胞死亡机制不同。尽管越来越多的进展突出了铁沉积、凋亡和抗氧化系统改变在ALS发病机制中的作用,但在系统生物学水平上的数据很少。因此,我们通过使用我们的数据集以及GEO数据库,系统地比较ALS患者和健康对照的诱导多能干细胞衍生的MNs的基因表达谱,对批量RNA测序(RNA-seq)数据进行了全面的生物信息学分析,以揭示铁死亡相关基因改变在ALS中的作用,特别是在()突变的选择性MN易损性方面。在本研究中,我们首先鉴定了突变体与健康对照之间的差异表达基因(DEGs)。随后,将DEGs和FRGs之间的交叉基因选为差异表达的铁死亡相关基因(DEFRGs)。对DEFRGs的功能富集和蛋白质-蛋白质相互作用(PPI)分析确定,与健康对照相比,DNA损伤、应激反应和细胞外基质(ECM)是导致-ALS突变的最显著失调的功能/途径。虽然基因集富集分析(GSEA)显示与凋亡相关的基因富集,但MNs的铁死亡程度和铁离子稳态/对铁的反应较低。总之,我们的发现可能有助于更好地理解细胞死亡途径在-ALS病理生理学中MNs对神经退行性变的选择性易损性的相关作用。