Suppr超能文献

一种用于预测斯里兰卡登革热时空模式的可解释协变量 compartmental 模型。

An explainable covariate compartmental model for predicting the spatio-temporal patterns of dengue in Sri Lanka.

作者信息

Liu Yichao, Fransson Peter, Heidecke Julian, Liyanage Prasad, Wallin Jonas, Rocklöv Joacim

机构信息

Interdisciplinary Center for Scientific Computing, Heidelberg, Germany.

Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany.

出版信息

PLoS Comput Biol. 2025 Sep 26;21(9):e1013540. doi: 10.1371/journal.pcbi.1013540. eCollection 2025 Sep.

Abstract

A majority of all infectious diseases manifest some climate-sensitivity. However, many of those sensitivities are not well understood as meteorological drivers of infectious diseases co-occur with other drivers exhibiting complex non-linear influences and feedback. This makes it hard to dissect their individual contributions. Here we apply a novel deep learning Explainable AI (XAI) compartment model with covariate drivers and dynamic feedback to predict and explain the dengue incidence across Sri Lanka. We compare the compartmental Susceptible-Exposed-Infected-Recovered (SEIR) model to a deep learning model without a compartmental structure. We find that the covariate compartmental hybrid model performs better and can describe drivers of the dengue spatiotemporal incidence over time. The strongest drivers in our model in order of importance are precipitation, socio-demographics, and normalized vegetation index. The novel method demonstrated can be used to leverage known infectious disease dynamics while accounting for the influence of other drivers and different population immunity contexts. While allowing for interpretation of the covariate driver influences, the approach bridges the gap between dynamical compartmental and data driven dynamical models.

摘要

大多数传染病都表现出一定的气候敏感性。然而,由于传染病的气象驱动因素与其他表现出复杂非线性影响和反馈的驱动因素同时出现,许多此类敏感性尚未得到充分理解。这使得难以剖析它们各自的作用。在此,我们应用一种具有协变量驱动因素和动态反馈的新型深度学习可解释人工智能(XAI) compartment模型来预测和解释斯里兰卡各地的登革热发病率。我们将SEIR compartment模型与无compartment结构的深度学习模型进行比较。我们发现,协变量compartment混合模型表现更好,并且可以描述随时间变化的登革热时空发病率的驱动因素。我们模型中按重要性排序的最强驱动因素是降水量、社会人口统计学和归一化植被指数。所展示的新方法可用于利用已知的传染病动态,同时考虑其他驱动因素和不同人群免疫情况的影响。在允许解释协变量驱动因素影响的同时,该方法弥合了动态compartment模型和数据驱动动态模型之间的差距。

相似文献

本文引用的文献

4
Characterizing dengue transmission in rural areas: A systematic review.描述农村地区登革热传播情况:系统综述。
PLoS Negl Trop Dis. 2023 Jun 8;17(6):e0011333. doi: 10.1371/journal.pntd.0011333. eCollection 2023 Jun.
6
Deep learning models for forecasting dengue fever based on climate data in Vietnam.基于越南气候数据的登革热预测深度学习模型。
PLoS Negl Trop Dis. 2022 Jun 13;16(6):e0010509. doi: 10.1371/journal.pntd.0010509. eCollection 2022 Jun.
8
Forecasting COVID-19 new cases using deep learning methods.利用深度学习方法预测 COVID-19 新发病例。
Comput Biol Med. 2022 May;144:105342. doi: 10.1016/j.compbiomed.2022.105342. Epub 2022 Feb 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验