Yasanayake C N, Zaitchik B F, Gnanadesikan A, Gardner L M, Shet A
Department of Earth & Planetary Sciences Johns Hopkins University Baltimore MD USA.
Department of Civil & Systems Engineering Johns Hopkins University Baltimore MD USA.
Geohealth. 2025 Sep 16;9(9):e2025GH001376. doi: 10.1029/2025GH001376. eCollection 2025 Sep.
The mosquito-borne disease dengue is sensitive to climate, in part because of the influence climate has on breeding habitats of dengue's mosquito vectors. Dengue risk assessment models currently leverage climate-dengue associations, yet what remain understudied are the pathways that yield different statistical relationships in different locations. We hypothesize that elucidating the mechanisms by which spatiotemporal variability in climate influences dengue incidence will improve dengue dynamics predictions across climatically distinct locations and beyond dengue's well-known seasonal cycles. We test this hypothesis by investigating a key pathway in the climate-dengue process chain: climate impacts on breeding habitats. We have implemented a mechanistic modeling pipeline that simulates climatic influence on habitat water dynamics and thereby on relative population size of the vector. We use this modeling pipeline, driven by meteorological data, to simulate monthly populations for three climatically distinct cities in Sri Lanka. We find that simulated vector abundance is plausibly associated with climate conditions and that climate drivers of vector abundance vary among locations. Moreover, tercile-tercile comparisons of dengue incidence against model variables indicate that risk assessments based on predicted vector abundance perform similarly to those based on meteorology alone-the signal of weather variability and its relationship to dengue propagates through the modeling pipeline. These results justify future testing of this modeling pipeline within a dengue risk assessment framework, where its process-based structure may be leveraged to guide proactive dengue control efforts in high-risk years and to simulate impacts of future climate conditions on dengue dynamics.
蚊媒疾病登革热对气候敏感,部分原因在于气候对登革热蚊媒繁殖栖息地的影响。目前,登革热风险评估模型利用气候与登革热的关联,但在不同地点产生不同统计关系的途径仍未得到充分研究。我们假设,阐明气候时空变化影响登革热发病率的机制,将改善对气候条件不同地区登革热动态的预测,并超越登革热众所周知的季节性周期。我们通过研究气候 - 登革热过程链中的一个关键途径来验证这一假设:气候对繁殖栖息地的影响。我们实施了一个机理建模流程,该流程模拟气候对栖息地水动态的影响,进而对蚊媒相对种群数量的影响。我们利用这个由气象数据驱动的建模流程,模拟斯里兰卡三个气候条件不同城市的月度蚊媒种群数量。我们发现,模拟的蚊媒丰度与气候条件合理相关,且蚊媒丰度的气候驱动因素在不同地点有所不同。此外,将登革热发病率与模型变量进行三分位数比较表明,基于预测蚊媒丰度的风险评估与仅基于气象学的风险评估表现相似——天气变化信号及其与登革热的关系通过建模流程得以传播。这些结果证明,未来可在登革热风险评估框架内对这个建模流程进行测试,在该框架中,其基于过程的结构可用于指导高风险年份的登革热主动防控工作,并模拟未来气候条件对登革热动态的影响。