Lee Mina, Sotzing Michael, Wang Jue, Chortos Alex
School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
Nat Commun. 2025 Sep 26;16(1):8513. doi: 10.1038/s41467-025-63470-7.
Neuromorphic sensory systems could provide low power consumption and direct electrical integration with biological systems. However, the complex fabrication of these multicomponent systems limits fabrication throughput and prototyping flexibility. To fabricate a slowly adapting type II artificial afferent nerve, this work introduces a hybrid direct write 3D printing approach that uses the pick and place of a surface mount ring oscillator to generate voltage pulses and an engineered quantum tunneling composite as a strain sensor. Our quantum tunneling sensor composition includes oil to increase the strain range and reduce the hysteresis compared to traditional quantum tunneling composites. The sensing composite provides a resistance change of over 6 orders of magnitude with a strain range of over 50%. Our approach enables rapid prototyping of 3D artificial sensory systems with potential applications in prosthetics and robotics.
神经形态传感系统可以实现低功耗,并与生物系统进行直接电集成。然而,这些多组件系统复杂的制造工艺限制了制造产量和原型制作的灵活性。为了制造一种慢适应II型人工传入神经,这项工作引入了一种混合直接写入3D打印方法,该方法使用表面贴装环形振荡器的拾取和放置来产生电压脉冲,并使用一种经过设计的量子隧穿复合材料作为应变传感器。与传统的量子隧穿复合材料相比,我们的量子隧穿传感器组合物包含油,以增加应变范围并减少滞后现象。该传感复合材料在超过50%的应变范围内提供超过6个数量级的电阻变化。我们的方法能够快速制作3D人工传感系统的原型,在假肢和机器人技术中有潜在应用。