Suppr超能文献

基于深度强化学习的智能低碳钢筋混凝土梁设计优化

Intelligent low carbon reinforced concrete beam design optimization via deep reinforcement learning.

作者信息

Hosseinzadeh Alireza, Dehestani Mehdi

机构信息

Faculty of Civil Engineering, Babol Noshirvani University of Technology, 484, Babol, 47148-71167, Iran.

出版信息

Sci Rep. 2025 Sep 26;15(1):33143. doi: 10.1038/s41598-025-18543-4.

Abstract

Reinforced concrete (RC) beam design currently faces significant challenges from the substantial carbon footprint of cementitious materials and the lack of practical automated tools for simultaneous structural-environmental optimization. To address this, this paper proposes an innovative two-stage framework by utilizing artificial neural networks (ANNs) and deep reinforcement learning (RL) to automate the design of sustainable and low-carbon RC beams. In the first stage, following a comprehensive analysis of 14 machine learning algorithms, an ANN was selected for its superior predictive accuracy. The trained ANN effectively predicts concrete compressive strength (coefficient of determination, R² ≈ 0.85) and carbon dioxide (CO) emissions (R² ≈ 0.99), critical parameters for subsequent optimization, exhibiting a loss function value of 0.15 and a mean absolute error of 0.38. The second stage involves the decision-making process for designing RC beams through deep RL, utilizing a Proximal Policy Optimization (PPO) as an agent. The agent operates within a 13-dimensional parametric action space, encompassing geometric and material composition variables, and interacts with a 26-variable state space to balance structural integrity with environmental sustainability. A customized RL environment was created to optimize designs for minimal CO emissions and evaluate compliance with ACI 318 - 19 flexural design criteria. The resulting framework demonstrates comprehensive sustainability achievements, with comparative benchmarking showing PPO-optimized designs yield 43.35-75.04% lower CO₂ emissions than those from an Advantage Actor-Critic (A2C) agent, alongside automated ACI 318 - 19 code compliance, optimized utilization of supplementary cementitious materials (SCMs), and improved structural efficiency through intelligent geometric parameter selection. The code is available as open source, and a web-based interface facilitates the dissemination of research outcomes.

摘要

钢筋混凝土(RC)梁设计目前面临着重大挑战,这源于胶凝材料巨大的碳足迹以及缺乏用于同时进行结构-环境优化的实用自动化工具。为解决这一问题,本文提出了一种创新的两阶段框架,通过利用人工神经网络(ANN)和深度强化学习(RL)来实现可持续低碳RC梁设计的自动化。在第一阶段,在对14种机器学习算法进行全面分析之后,选择了人工神经网络,因为其具有卓越的预测精度。经过训练的人工神经网络能够有效地预测混凝土抗压强度(决定系数,R²≈0.85)和二氧化碳(CO)排放量(R²≈0.99),这是后续优化的关键参数,其损失函数值为0.15,平均绝对误差为0.38。第二阶段涉及通过深度强化学习进行RC梁设计的决策过程,使用近端策略优化(PPO)作为智能体。该智能体在一个13维的参数动作空间内运行,该空间包含几何和材料组成变量,并与一个26变量的状态空间进行交互,以平衡结构完整性和环境可持续性。创建了一个定制的强化学习环境,以优化设计,实现最低的CO排放量,并评估是否符合美国混凝土学会(ACI)318 - 19弯曲设计标准。由此产生的框架展示了全面的可持续性成果,对比基准测试表明,与优势行动者-评论家(A2C)智能体相比,经PPO优化的设计可减少43.35 - 75.04%的CO₂排放量,同时实现自动符合ACI 318 - 19规范、优化辅助胶凝材料(SCMs)的使用,并通过智能几何参数选择提高结构效率。该代码作为开源代码提供,基于网络的界面便于研究成果的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c9e/12475271/643fd58ba1ff/41598_2025_18543_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验