Shokrnia Hamed, KhodabandehLou Ashkan, Hamidi Peyman, Ashrafzadeh Fedra
Department of Civil Engineering, Ur.C, Islamic Azad University, Urmia, Iran.
Sci Rep. 2025 Jun 4;15(1):19671. doi: 10.1038/s41598-025-05146-2.
Concrete compressive strength (CS) is crucial for ensuring the safety, durability, and performance of structures. So, its precise simulation helps anticipate material behavior under various conditions. Despite a comprehensive experimental investigation of the impact of silica (SiO) on the CS of the fiber-reinforced concrete, its mathematical aspects were not well studied. So, this study integrates the ANFIS (adaptive neuro-fuzzy inference system) and ELM (extreme learning machine) machine learning models with three optimization algorithms, i.e., WCA (water cycle algorithm), PSO (particle swarm optimization), and GWO (grey wolf optimizer) to precisely estimate the CS of fiber-reinforced concrete (FRC) containing SiO. An experimental database comprising 228 datasets is used to develop the models, compare their accuracy, and select the best one. The database contains information on the volumetric percentage of fibers, sample age, amount of coarse/fine aggregates, water, cement, nano silica, and binder as independent features, while the compressive strength is the target variable. The sensitivity assessment approves that the training and generalization abilities of the ELM and ANFIS models for the CS prediction of FRC are improved by their integration with the GWO algorithm. The best model (i.e., ELM-GWO) predicts the testing datasets with the R (coefficient of determination), RMSE (root mean square error), SI (scatter index), RPD (relative percent deviation), and PMARE (percent mean absolute relative error) values of 0.9510, 3.985 MPa, 0.061, 0.8, and 5.421, respectively.
混凝土抗压强度(CS)对于确保结构的安全性、耐久性和性能至关重要。因此,其精确模拟有助于预测材料在各种条件下的行为。尽管对二氧化硅(SiO)对纤维增强混凝土抗压强度的影响进行了全面的实验研究,但其数学方面的研究并不充分。因此,本研究将自适应神经模糊推理系统(ANFIS)和极限学习机(ELM)机器学习模型与三种优化算法,即水循环算法(WCA)、粒子群优化算法(PSO)和灰狼优化算法(GWO)相结合,以精确估计含SiO的纤维增强混凝土(FRC)的抗压强度。使用一个包含228个数据集的实验数据库来开发模型、比较其准确性并选择最佳模型。该数据库包含纤维体积百分比、样品龄期、粗/细集料、水、水泥、纳米二氧化硅和粘结剂的含量等作为独立特征的信息,而抗压强度是目标变量。敏感性评估证实,ELM和ANFIS模型与GWO算法相结合后,其对FRC抗压强度预测的训练和泛化能力得到了提高。最佳模型(即ELM-GWO)预测测试数据集的决定系数(R)、均方根误差(RMSE)、离散指数(SI)、相对百分比偏差(RPD)和平均绝对相对误差百分比(PMARE)值分别为0.9510、3.985MPa、0.061、0.8和5.421。