Ghorbal Anis Ben, Grine Azedine, Elbatal Ibrahim, Almetwally Ehab M, Eid Marwa M, El-Kenawy El-Sayed M
Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11632, Riyadh, Saudi Arabia.
Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, 11152, Egypt.
Sci Rep. 2025 Feb 1;15(1):4021. doi: 10.1038/s41598-025-86251-0.
This paper provides a novel approach to estimating CO₂ emissions with high precision using machine learning based on DPRNNs with NiOA. The data preparation used in the present methodology involves sophisticated stages such as Principal Component Analysis (PCA) as well as Blind Source Separation (BSS) to reduce noise as well as to improve feature selection. This purified input dataset is used in the DPRNNs model, where both short and long-term temporal dependencies in the data are captured well. NiOA is utilized to tune those parameters; as a result, the prediction accuracy is quite spectacular. Experimental results also demonstrate that the proposed NiOA-DPRNNs framework gets the highest value of R (0.9736), lowest error rates and fitness values than other existing models and optimization methods. From the Wilcoxon and ANOVA analyses, one can approve the specificity and consistency of the findings. Liebert and Ruple firmly rethink this rather simple output as a robust theoretic and empirical framework for evaluating and projecting CO emissions; they also view it as a helpful guide for policymakers fighting global warming. Further study can build up this theory to include other greenhouse gases and create methods enabling instantaneous tracking for sophisticated and responsive approaches.
本文提出了一种基于带有NiOA的深度循环残差神经网络(DPRNNs)的高精度估算二氧化碳排放量的新方法。本方法中使用的数据准备涉及主成分分析(PCA)和盲源分离(BSS)等复杂阶段,以减少噪声并改善特征选择。这个净化后的输入数据集用于DPRNNs模型,该模型能很好地捕捉数据中的短期和长期时间依赖性。利用NiOA来调整这些参数;结果,预测精度相当惊人。实验结果还表明,所提出的NiOA-DPRNNs框架比其他现有模型和优化方法获得了最高的R值(0.9736)、最低的错误率和适应度值。从威尔科克森(Wilcoxon)分析和方差分析(ANOVA)可以证实研究结果的特异性和一致性。利伯特(Liebert)和鲁普尔(Ruple)坚定地将这个相当简单的输出重新视为一个用于评估和预测碳排放的强大理论和实证框架;他们还将其视为应对全球变暖的政策制定者的有用指南。进一步的研究可以完善这一理论,纳入其他温室气体,并创建能够实现即时跟踪的方法,以采取复杂且灵活的应对措施。