Koumpagioti Despoina, Dimitroglou Margarita, Mpoutopoulou Barbara, Moriki Dafni, Douros Konstantinos
Department of Nursing, University of West Attica, 12243 Athens, Greece.
Respiratory and Allergy Unit, 3rd Pediatric Department, General University Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece.
Children (Basel). 2025 Aug 23;12(9):1110. doi: 10.3390/children12091110.
This review aims to provide a comprehensive overview of how oxidative stress drives inflammation, structural remodeling, and clinical expression of childhood asthma, while critically appraising emerging redox-sensitive biomarkers and antioxidant-focused preventive and therapeutic strategies. Oxidative stress arises when reactive oxygen species (ROS) and reactive nitrogen species (RNS) outpace airway defenses. This surplus provokes airway inflammation: ROS/RNS activate nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), recruit eosinophils and neutrophils, and amplify type-2 cytokines. Normally, an antioxidant network-glutathione (GSH), enzymes such as catalase (CAT) and superoxide dismutase (SOD), and nuclear factor erythroid 2-related factor 2 (Nrf2)-maintains redox balance. Prenatal and early exposure to fine particulate matter <2.5 micrometers (µm) (PM), aeroallergens, and tobacco smoke, together with polymorphisms in glutathione S-transferase P1 (GSTP1) and CAT, overwhelm these defenses, driving epithelial damage, airway remodeling, and corticosteroid resistance-the core of childhood asthma pathogenesis. Clinically, biomarkers such as exhaled 8-isoprostane, hydrogen peroxide (HO), and fractional exhaled nitric oxide (FeNO) surge during exacerbations and predict relapses. Therapeutic avenues include Mediterranean-style diet, regular aerobic exercise, pharmacological Nrf2 activators, GSH precursors, and mitochondria-targeted antioxidants; early trials report improved lung function and fewer attacks. Ongoing translational research remains imperative to substantiate these approaches and to enable the personalization of therapy through individual redox status and genetic susceptibility, ultimately transforming the care and prognosis of pediatric asthma.
本综述旨在全面概述氧化应激如何驱动儿童哮喘的炎症、结构重塑和临床症状,同时批判性地评估新出现的氧化还原敏感生物标志物以及以抗氧化剂为重点的预防和治疗策略。当活性氧(ROS)和活性氮(RNS)超过气道防御能力时,就会产生氧化应激。这种过剩引发气道炎症:ROS/RNS激活核因子κB(NF-κB)和激活蛋白-1(AP-1),募集嗜酸性粒细胞和中性粒细胞,并放大2型细胞因子。正常情况下,抗氧化网络——谷胱甘肽(GSH)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)等酶以及核因子红细胞2相关因子2(Nrf2)——维持氧化还原平衡。产前和早期接触小于2.5微米(µm)的细颗粒物(PM)、空气过敏原和烟草烟雾,以及谷胱甘肽S-转移酶P1(GSTP1)和CAT的多态性,会使这些防御能力不堪重负,导致上皮损伤、气道重塑和皮质类固醇抵抗——儿童哮喘发病机制的核心。临床上,呼出气8-异前列腺素、过氧化氢(HO)和呼出一氧化氮分数(FeNO)等生物标志物在病情加重时激增,并可预测复发。治疗途径包括地中海式饮食、定期有氧运动、药理学Nrf2激活剂、GSH前体和线粒体靶向抗氧化剂;早期试验报告显示肺功能改善且发作次数减少。持续的转化研究对于证实这些方法并通过个体氧化还原状态和遗传易感性实现治疗个性化至关重要,最终改变儿童哮喘的护理和预后。