Kumar Rahul, Dougherty Conor, Sporn Kyle, Khanna Akshay, Ravi Puja, Prabhakar Pranay, Zaman Nasif
Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St., Philadelphia, PA 19107, USA.
Bioengineering (Basel). 2025 Sep 9;12(9):967. doi: 10.3390/bioengineering12090967.
The rapid evolution of artificial intelligence (AI) and machine learning (ML) technologies has initiated a paradigm shift in contemporary spine care. This narrative review synthesizes advances across imaging-based diagnostics, surgical planning, genomic risk stratification, and post-operative outcome prediction. We critically assess high-performing AI tools, such as convolutional neural networks for vertebral fracture detection, robotic guidance platforms like Mazor X and ExcelsiusGPS, and deep learning-based morphometric analysis systems. In parallel, we examine the emergence of ambient clinical intelligence and precision pharmacogenomics as enablers of personalized spine care. Notably, genome-wide association studies (GWAS) and polygenic risk scores are enabling a shift from reactive to predictive management models in spine surgery. We also highlight multi-omics platforms and federated learning frameworks that support integrative, privacy-preserving analytics at scale. Despite these advances, challenges remain-including algorithmic opacity, regulatory fragmentation, data heterogeneity, and limited generalizability across populations and clinical settings. Through a multidimensional lens, this review outlines not only current capabilities but also future directions to ensure safe, equitable, and high-fidelity AI deployment in spine care delivery.
人工智能(AI)和机器学习(ML)技术的快速发展引发了当代脊柱护理的范式转变。这篇叙述性综述综合了基于成像的诊断、手术规划、基因组风险分层和术后结果预测等方面的进展。我们批判性地评估了高性能的人工智能工具,如用于椎体骨折检测的卷积神经网络、像Mazor X和ExcelsiusGPS这样的机器人引导平台,以及基于深度学习的形态计量分析系统。同时,我们研究了环境临床智能和精准药物基因组学作为个性化脊柱护理推动者的出现。值得注意的是,全基因组关联研究(GWAS)和多基因风险评分正在推动脊柱手术从反应性管理模式向预测性管理模式转变。我们还强调了支持大规模综合、隐私保护分析的多组学平台和联邦学习框架。尽管取得了这些进展,但挑战依然存在,包括算法不透明、监管碎片化、数据异质性以及在不同人群和临床环境中的可推广性有限。通过多维度视角,本综述不仅概述了当前的能力,还阐述了未来的方向,以确保在脊柱护理中安全、公平且高保真地部署人工智能。