Mogildea George, Mogildea Marian, Zgura Sorin I, Mihailescu Natalia, Craciun Doina, Craciun Valentin, Brincoveanu Oana, Mocanu Alexandra, Tucureanu Vasilica, Romanitan Cosmin, Paraschiv Alexandru, Vasile Bogdan S, Constantinescu Catalin-Daniel
Institute of Space Science-INFLPR, 077125 Magurele, Romania.
National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania.
Int J Mol Sci. 2025 Sep 15;26(18):8981. doi: 10.3390/ijms26188981.
We present a novel approach for the synthesis of crystalline zinc oxide (ZnO) nanopowders based on the direct interaction of high-power microwave radiation with a zinc wire in atmospheric air. The process utilizes a localized microwave-induced plasma to rapidly vaporize the metal, followed by oxidation and condensation, resulting in the deposition of ZnO nanostructures on glass substrates. Plasma diagnostics confirmed the generation of a plasma in local thermodynamic equilibrium (LTE), characterized by high electron temperatures. Optical emission spectroscopy highlighted atomic species such as ZnI, ZnII, OI, OII, and NI, as well as molecular species including OH, N and O. The spectral fingerprint of N molecules reveals the presence of high energy electrons, while the persistent occurrence of OI and OII emission lines throughout the plasma spectrum reveals that ZnO formation is mainly driven by the continuous dissociation of molecular oxygen. High crystallinity and chemical purity of the synthesized ZnO nanoparticles were confirmed through SEM, TEM, XRD, FTIR, and EDX characterization. The resulting nanorods exhibit a rod-like morphology, with diameters ranging from 12 nm to 63 nm and lengths between 58 nm and 354 nm. This low-cost, high-yield method offers a scalable and efficient route for metal oxide nanomaterial fabrication via direct metal-microwave coupling, providing a promising alternative to conventional physical and chemical synthesis techniques.
我们提出了一种基于高功率微波辐射与锌丝在大气中直接相互作用来合成结晶氧化锌(ZnO)纳米粉末的新方法。该过程利用局部微波诱导等离子体快速汽化金属,随后进行氧化和冷凝,从而在玻璃基板上沉积ZnO纳米结构。等离子体诊断证实了局部热力学平衡(LTE)等离子体的产生,其特征是具有高电子温度。光学发射光谱突出了诸如ZnI、ZnII、OI、OII和NI等原子物种,以及包括OH、N和O在内的分子物种。N分子的光谱指纹揭示了高能电子的存在,而在整个等离子体光谱中OI和OII发射线的持续出现表明ZnO的形成主要由分子氧的持续解离驱动。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和能谱分析(EDX)表征证实了合成的ZnO纳米颗粒具有高结晶度和化学纯度。所得纳米棒呈现出棒状形态,直径范围为12纳米至63纳米,长度在58纳米至354纳米之间。这种低成本、高产率的方法通过直接金属 - 微波耦合为金属氧化物纳米材料的制造提供了一种可扩展且高效的途径,为传统物理和化学合成技术提供了一种有前景的替代方案。