Grzeski Marta, Jensen Patrick Moeller, Hempel Benjamin-Florian, Thiele Herbert, Lellmann Jan, Schallenberg Simon, Budach Volker, Keilholz Ulrich, Tinhofer Ingeborg, Klein Oliver
Imaging Mass Spectrometry Unit, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
Int J Mol Sci. 2025 Sep 18;26(18):9084. doi: 10.3390/ijms26189084.
Head and neck squamous cell carcinoma (HNSCC) is often diagnosed at advanced stages. Due to pronounced intratumoral heterogeneity (ITH), reliable risk stratification and prediction of treatment response remain challenging. This study aimed to identify peptide signatures in HNSCC tissue that are associated with treatment outcomes in HPV-negative, advanced-stage HNSCC patients undergoing 5-fluorouracil/platinum-based chemoradiotherapy (CDDP-CRT). We integrated matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of tryptic peptides with univariate statistics and machine learning approaches to uncover potential prognostic patterns. Formalin-fixed, paraffin-embedded whole tumor sections from 31 treatment-naive, HPV-negative HNSCC patients were digested in situ with trypsin, and the generated peptides were analyzed using MALDI-MSI. Clinical follow-up revealed recurrence or progression (RecPro) in 20 patients, while 11 patients showed no evidence of disease (NED). Classification models were developed based on the recorded peptide profiles using both unrestricted and feature-restricted approaches, employing either the full set of / features or a subset of the most discriminatory / features, respectively. The unrestricted model achieved a balanced accuracy of 71% at the patient level (75% sensitivity, 66% specificity), whereas the feature-restricted model reached a balanced accuracy of 72%, showing increased specificity (92%) but reduced sensitivity (52%) in the CDDP-CRT cohort. In order to assess treatment specificity, models trained on the CDDP-CRT cohort were tested on an independent patient cohort treated with mitomycin C-based CRT (MMC-CRT). Neither model demonstrated prognostic performance in the MMC-CRT patient cohort, suggesting specificity for platinum-based therapy. Presented findings highlight the potential of MALDI-MSI-based proteomic profiling to identify patients at elevated risk of recurrence following CDDP-CRT. This approach may support more personalized risk assessment and treatment planning, ultimately contributing to improved therapeutic outcomes in HPV-negative HNSCC.
头颈部鳞状细胞癌(HNSCC)通常在晚期被诊断出来。由于肿瘤内异质性(ITH)明显,可靠的风险分层和治疗反应预测仍然具有挑战性。本研究旨在确定HNSCC组织中的肽特征,这些特征与接受5-氟尿嘧啶/铂类化疗放疗(CDDP-CRT)的HPV阴性、晚期HNSCC患者的治疗结果相关。我们将胰蛋白酶肽的基质辅助激光解吸/电离质谱成像(MALDI-MSI)与单变量统计和机器学习方法相结合,以发现潜在的预后模式。对31例未经治疗、HPV阴性的HNSCC患者的福尔马林固定、石蜡包埋的全肿瘤切片进行原位胰蛋白酶消化,并用MALDI-MSI分析产生的肽。临床随访显示20例患者复发或进展(RecPro),而11例患者无疾病证据(NED)。使用无限制和特征限制方法,分别基于记录的肽谱开发分类模型,前者采用全部特征,后者采用最具区分性的特征子集。无限制模型在患者水平上的平衡准确率为71%(敏感性75%,特异性66%),而特征限制模型的平衡准确率为72%,在CDDP-CRT队列中显示出特异性增加(92%)但敏感性降低(52%)。为了评估治疗特异性,在CDDP-CRT队列上训练的模型在接受丝裂霉素C为基础的CRT(MMC-CRT)治疗的独立患者队列上进行测试。两个模型在MMC-CRT患者队列中均未显示出预后性能,表明对铂类疗法具有特异性。所呈现的研究结果突出了基于MALDI-MSI的蛋白质组学分析在识别CDDP-CRT后复发风险升高的患者方面的潜力。这种方法可能支持更个性化的风险评估和治疗计划,最终有助于改善HPV阴性HNSCC的治疗效果。