Suppr超能文献

利用基质辅助激光解吸电离成像和深度学习对唾液腺癌进行多类别亚型分类

Multi-Class Cancer Subtyping in Salivary Gland Carcinomas with MALDI Imaging and Deep Learning.

作者信息

Pertzborn David, Arolt Christoph, Ernst Günther, Lechtenfeld Oliver J, Kaesler Jan, Pelzel Daniela, Guntinas-Lichius Orlando, von Eggeling Ferdinand, Hoffmann Franziska

机构信息

Innovative Biophotonics & MALDI Imaging, ENT Department, Jena University Hospital, 07747 Jena, Germany.

Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany.

出版信息

Cancers (Basel). 2022 Sep 5;14(17):4342. doi: 10.3390/cancers14174342.

Abstract

Salivary gland carcinomas (SGC) are a heterogeneous group of tumors. The prognosis varies strongly according to its type, and even the distinction between benign and malign tumor is challenging. Adenoid cystic carcinoma (AdCy) is one subgroup of SGCs that is prone to late metastasis. This makes accurate tumor subtyping an important task. Matrix-assisted laser desorption/ionization (MALDI) imaging is a label-free technique capable of providing spatially resolved information about the abundance of biomolecules according to their mass-to-charge ratio. We analyzed tissue micro arrays (TMAs) of 25 patients (including six different SGC subtypes and a healthy control group of six patients) with high mass resolution MALDI imaging using a 12-Tesla magnetic resonance mass spectrometer. The high mass resolution allowed us to accurately detect single masses, with strong contributions to each class prediction. To address the added complexity created by the high mass resolution and multiple classes, we propose a deep-learning model. We showed that our deep-learning model provides a per-class classification accuracy of greater than 80% with little preprocessing. Based on this classification, we employed methods of explainable artificial intelligence (AI) to gain further insights into the spectrometric features of AdCys.

摘要

唾液腺癌(SGC)是一组异质性肿瘤。其预后因类型不同而有很大差异,甚至区分良性和恶性肿瘤也具有挑战性。腺样囊性癌(AdCy)是唾液腺癌的一个亚组,容易发生晚期转移。这使得准确的肿瘤亚型分类成为一项重要任务。基质辅助激光解吸/电离(MALDI)成像技术是一种无需标记的技术,能够根据生物分子的质荷比提供有关其丰度的空间分辨信息。我们使用12特斯拉磁共振质谱仪,通过高质量分辨率的MALDI成像分析了25例患者的组织微阵列(TMA)(包括六种不同的唾液腺癌亚型和一个由六名患者组成的健康对照组)。高质量分辨率使我们能够准确检测单个质量数,这对每个类别预测有很大贡献。为了解决高质量分辨率和多个类别带来的额外复杂性,我们提出了一个深度学习模型。我们表明,我们的深度学习模型在几乎没有预处理的情况下,每类分类准确率大于80%。基于这种分类,我们采用可解释人工智能(AI)方法,以进一步深入了解腺样囊性癌的光谱特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验