Suppr超能文献

定量蛋白质生物标志物面板:通过蛋白质组学改善临床实践的途径。

Quantitative protein biomarker panels: a path to improved clinical practice through proteomics.

机构信息

Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.

出版信息

EMBO Mol Med. 2023 Apr 11;15(4):e16061. doi: 10.15252/emmm.202216061. Epub 2023 Mar 20.

Abstract

The utilisation of protein biomarker panels, rather than individual protein biomarkers, offers a more comprehensive representation of human physiology. It thus has the potential to improve diagnosis, prognosis and the differentiation of responders from nonresponders in the context of precision medicine. Although several proteomic techniques exist for measuring biomarker panels, the integration of proteomics into clinical practice has been limited. In this Commentary, we highlight the significance of quantitative protein biomarker panels in clinical medicine and outline the challenges that must be addressed in order to identify the most promising panels and implement them in clinical routines to realise their medical potential. Furthermore, we argue that the absolute quantification of protein panels through targeted mass spectrometric assays remains the most promising technology for translating proteomics into routine clinical applications due to its high flexibility, low sample costs, independence from affinity reagents and low entry barriers for its integration into existing laboratory workflows.

摘要

蛋白质生物标志物组合的应用,优于单一蛋白质生物标志物,更全面地反映了人类的生理机能。因此,在精准医疗背景下,它有可能改善诊断、预后,并区分应答者和无应答者。尽管存在几种用于测量生物标志物组合的蛋白质组学技术,但蛋白质组学在临床实践中的整合仍受到限制。在本评论中,我们强调了定量蛋白质生物标志物组合在临床医学中的重要性,并概述了为确定最有前途的组合并将其纳入临床常规以实现其医学潜力而必须解决的挑战。此外,我们认为,通过靶向质谱分析进行蛋白质组合的绝对定量仍然是将蛋白质组学转化为常规临床应用的最有前途的技术,因为它具有高灵活性、低样本成本、不依赖亲和试剂以及将其集成到现有实验室工作流程的低进入壁垒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e68/10086577/3dceea306d45/EMMM-15-e16061-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验