Jędrzejewski Mateusz, Szeleszczuk Łukasz, Pisklak Dariusz Maciej
Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland.
Doctoral School, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warsaw, Poland.
Int J Mol Sci. 2025 Sep 20;26(18):9204. doi: 10.3390/ijms26189204.
Methylation reactions catalyzed by S-adenosylmethionine (SAM)-dependent methyltransferases are essential to numerous biological functions, including gene expression regulation, epigenetic modifications, and biosynthesis of natural products. Dysregulation of these enzymes is associated with diseases, including cancer and neurodevelopmental disorders, making them attractive drug targets. This review explores the contribution of computational methods, particularly quantum chemical calculations and molecular dynamics (MD) simulations, in elucidating the mechanisms of SAM-dependent methyltransferases. These techniques enable detailed characterization of transition states and reaction pathways, often inaccessible by experimental methods. The review discusses molecular modeling approaches such as the quantum chemical cluster approach (QM-cluster) and hybrid QM/MM methods, emphasizing their applications in studying methyl group transfer, substrate specificity, and the roles of water molecules and metal ions in catalysis. Additionally, dynamic aspects of enzyme function are addressed using classical MD and QM/MM MD simulations. Case studies demonstrate how computational predictions align with experimental data and enable rational design of selective inhibitors and engineered enzymes with altered specificity. Overall, computational chemistry offers a powerful, atomistic view of SAM-dependent methyltransferases, not only complementing experimental studies but also providing a foundation for the design of future experiments in this field.
由S-腺苷甲硫氨酸(SAM)依赖性甲基转移酶催化的甲基化反应对于众多生物学功能至关重要,包括基因表达调控、表观遗传修饰以及天然产物的生物合成。这些酶的失调与包括癌症和神经发育障碍在内的疾病相关,使其成为有吸引力的药物靶点。本综述探讨了计算方法,特别是量子化学计算和分子动力学(MD)模拟,在阐明SAM依赖性甲基转移酶机制方面的贡献。这些技术能够详细表征过渡态和反应途径,而这些通常是实验方法难以实现的。综述讨论了诸如量子化学簇方法(QM-簇)和混合QM/MM方法等分子建模方法,强调了它们在研究甲基转移、底物特异性以及水分子和金属离子在催化中的作用方面的应用。此外,使用经典MD和QM/MM MD模拟来探讨酶功能的动态方面。案例研究展示了计算预测如何与实验数据相符,并能够合理设计具有改变特异性的选择性抑制剂和工程酶。总体而言,计算化学为SAM依赖性甲基转移酶提供了强大的原子水平视角,不仅补充了实验研究,还为该领域未来实验的设计奠定了基础。