Suppr超能文献

NNP/MM:用机器学习势和分子力学加速分子动力学模拟。

NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics.

机构信息

Acellera Labs, C/Doctor Trueta 183, Barcelona 08005, Spain.

Computational Science Laboratory, Universitat Pompeu Fabra, PRBB, C/Doctor Aiguader 88, Barcelona 08003, Spain.

出版信息

J Chem Inf Model. 2023 Sep 25;63(18):5701-5708. doi: 10.1021/acs.jcim.3c00773. Epub 2023 Sep 11.

Abstract

Machine learning potentials have emerged as a means to enhance the accuracy of biomolecular simulations. However, their application is constrained by the significant computational cost arising from the vast number of parameters compared with traditional molecular mechanics. To tackle this issue, we introduce an optimized implementation of the hybrid method (NNP/MM), which combines a neural network potential (NNP) and molecular mechanics (MM). This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency. By conducting molecular dynamics (MD) simulations on various protein-ligand complexes and metadynamics (MTD) simulations on a ligand, we showcase the capabilities of our implementation of NNP/MM. It has enabled us to increase the simulation speed by ∼5 times and achieve a combined sampling of 1 μs for each complex, marking the longest simulations ever reported for this class of simulations.

摘要

机器学习方法已经成为提高生物分子模拟准确性的一种手段。然而,由于与传统分子力学相比,它们的应用受到大量参数带来的巨大计算成本的限制。为了解决这个问题,我们引入了一种混合方法(NNP/MM)的优化实现,该方法结合了神经网络势(NNP)和分子力学(MM)。这种方法使用 NNP 来模拟系统的一部分,例如小分子,而对其余系统使用 MM 以提高效率。通过对各种蛋白质-配体复合物进行分子动力学(MD)模拟和对配体进行元动力学(MTD)模拟,我们展示了我们的 NNP/MM 实现的能力。它使我们能够将模拟速度提高约 5 倍,并为每个复合物实现 1μs 的组合采样,这标志着此类模拟中报告的最长模拟。

相似文献

引用本文的文献

1
Machine Learning-Enhanced Calculation of Quantum-Classical Binding Free Energies.机器学习增强的量子-经典结合自由能计算
J Chem Theory Comput. 2025 Aug 26;21(16):8182-8198. doi: 10.1021/acs.jctc.5c00388. Epub 2025 Aug 5.
7
How does machine learning augment alchemical binding free energy calculations?机器学习如何增强炼金术结合自由能计算?
Future Med Chem. 2025 Mar;17(5):509-511. doi: 10.1080/17568919.2025.2463870. Epub 2025 Feb 8.
8
Scaling Graph Neural Networks to Large Proteins.将图神经网络扩展至大型蛋白质
J Chem Theory Comput. 2025 Feb 25;21(4):2055-2066. doi: 10.1021/acs.jctc.4c01420. Epub 2025 Feb 6.
10
Alchemical Free-Energy Calculations at Quantum-Chemical Precision.量子化学精度下的炼金术自由能计算
J Phys Chem Lett. 2025 Jan 30;16(4):863-869. doi: 10.1021/acs.jpclett.4c03213. Epub 2025 Jan 17.

本文引用的文献

6
TorchMD: A Deep Learning Framework for Molecular Simulations.TorchMD:用于分子模拟的深度学习框架。
J Chem Theory Comput. 2021 Apr 13;17(4):2355-2363. doi: 10.1021/acs.jctc.0c01343. Epub 2021 Mar 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验