Suppr超能文献

相似文献

1
NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics.
J Chem Inf Model. 2023 Sep 25;63(18):5701-5708. doi: 10.1021/acs.jcim.3c00773. Epub 2023 Sep 11.
2
Enhancing Protein-Ligand Binding Affinity Predictions Using Neural Network Potentials.
J Chem Inf Model. 2024 Mar 11;64(5):1481-1485. doi: 10.1021/acs.jcim.3c02031. Epub 2024 Feb 20.
3
Revealing the thermal decomposition mechanism of RDX crystals by a neural network potential.
Phys Chem Chem Phys. 2022 Nov 2;24(42):25885-25894. doi: 10.1039/d2cp03511a.
4
neural network MD simulation of thermal decomposition of a high energy material CL-20/TNT.
Phys Chem Chem Phys. 2022 May 18;24(19):11801-11811. doi: 10.1039/d2cp00710j.
5
Graph-convolutional neural networks for (QM)ML/MM molecular dynamics simulations.
Phys Chem Chem Phys. 2022 Sep 28;24(37):22497-22512. doi: 10.1039/d2cp02931f.
6
Deep machine learning interatomic potential for liquid silica.
Phys Rev E. 2020 Nov;102(5-1):052125. doi: 10.1103/PhysRevE.102.052125.
7
Flexible Fitting of Small Molecules into Electron Microscopy Maps Using Molecular Dynamics Simulations with Neural Network Potentials.
J Chem Inf Model. 2020 May 26;60(5):2591-2604. doi: 10.1021/acs.jcim.9b01167. Epub 2020 Mar 30.
9
Biomolecular Adsorption on Nanomaterials: Combining Molecular Simulations with Machine Learning.
J Chem Inf Model. 2024 May 13;64(9):3799-3811. doi: 10.1021/acs.jcim.3c01606. Epub 2024 Apr 16.
10
MISATO: machine learning dataset of protein-ligand complexes for structure-based drug discovery.
Nat Comput Sci. 2024 May;4(5):367-378. doi: 10.1038/s43588-024-00627-2. Epub 2024 May 10.

引用本文的文献

1
Machine Learning-Enhanced Calculation of Quantum-Classical Binding Free Energies.
J Chem Theory Comput. 2025 Aug 26;21(16):8182-8198. doi: 10.1021/acs.jctc.5c00388. Epub 2025 Aug 5.
2
Transferring Knowledge from MM to QM: A Graph Neural Network-Based Implicit Solvent Model for Small Organic Molecules.
J Chem Theory Comput. 2025 Aug 12;21(15):7450-7459. doi: 10.1021/acs.jctc.5c00728. Epub 2025 Jul 28.
3
A Computational Perspective to Intermolecular Interactions and the Role of the Solvent on Regulating Protein Properties.
Chem Rev. 2025 Aug 13;125(15):7023-7056. doi: 10.1021/acs.chemrev.4c00807. Epub 2025 Jul 28.
4
A beginner's approach to deep learning applied to VS and MD techniques.
J Cheminform. 2025 Apr 8;17(1):47. doi: 10.1186/s13321-025-00985-7.
5
QuantumBind-RBFE: Accurate Relative Binding Free Energy Calculations Using Neural Network Potentials.
J Chem Inf Model. 2025 Apr 28;65(8):4081-4089. doi: 10.1021/acs.jcim.5c00033. Epub 2025 Apr 8.
6
Neural Network Potential with Multiresolution Approach Enables Accurate Prediction of Reaction Free Energies in Solution.
J Am Chem Soc. 2025 Feb 26;147(8):6835-6856. doi: 10.1021/jacs.4c17015. Epub 2025 Feb 17.
7
How does machine learning augment alchemical binding free energy calculations?
Future Med Chem. 2025 Mar;17(5):509-511. doi: 10.1080/17568919.2025.2463870. Epub 2025 Feb 8.
8
Scaling Graph Neural Networks to Large Proteins.
J Chem Theory Comput. 2025 Feb 25;21(4):2055-2066. doi: 10.1021/acs.jctc.4c01420. Epub 2025 Feb 6.
9
Fine-tuning molecular mechanics force fields to experimental free energy measurements.
bioRxiv. 2025 Jan 8:2025.01.06.631610. doi: 10.1101/2025.01.06.631610.
10
Alchemical Free-Energy Calculations at Quantum-Chemical Precision.
J Phys Chem Lett. 2025 Jan 30;16(4):863-869. doi: 10.1021/acs.jpclett.4c03213. Epub 2025 Jan 17.

本文引用的文献

1
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
Nat Commun. 2022 May 4;13(1):2453. doi: 10.1038/s41467-022-29939-5.
2
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects.
Nat Commun. 2021 Dec 14;12(1):7273. doi: 10.1038/s41467-021-27504-0.
4
Automatically Constructed Neural Network Potentials for Molecular Dynamics Simulation of Zinc Proteins.
Front Chem. 2021 Jun 18;9:692200. doi: 10.3389/fchem.2021.692200. eCollection 2021.
5
Simulating protein-ligand binding with neural network potentials.
Chem Sci. 2020 Jan 23;11(9):2362-2368. doi: 10.1039/c9sc06017k.
6
TorchMD: A Deep Learning Framework for Molecular Simulations.
J Chem Theory Comput. 2021 Apr 13;17(4):2355-2363. doi: 10.1021/acs.jctc.0c01343. Epub 2021 Mar 17.
7
Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
J Chem Inf Model. 2020 Dec 28;60(12):6258-6268. doi: 10.1021/acs.jcim.0c00904. Epub 2020 Dec 2.
8
OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features.
J Chem Phys. 2020 Sep 28;153(12):124111. doi: 10.1063/5.0021955.
9
Scalable molecular dynamics on CPU and GPU architectures with NAMD.
J Chem Phys. 2020 Jul 28;153(4):044130. doi: 10.1063/5.0014475.
10
TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials.
J Chem Inf Model. 2020 Jul 27;60(7):3408-3415. doi: 10.1021/acs.jcim.0c00451. Epub 2020 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验