Tang Dihua, Deng Wen, Yan Xin, Gaumet Jean-Jacques, Luo Wen
Department of Physics, School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Materials (Basel). 2025 Sep 15;18(18):4320. doi: 10.3390/ma18184320.
Electrolyte-gated transistors (EGTs) have emerged as a highly promising platform for neuromorphic computing and bioelectronics, offering potential solutions to overcome the limitations of the von Neumann architecture. This comprehensive review examines recent advancements in EGT technology, focusing on three critical dimensions: materials, device configurations, and external field regulation strategies. We systematically analyze the development and properties of diverse electrolyte materials, including liquid electrolyte, polymer-based electrolytes, and inorganic solid-state electrolytes, highlighting their influence on ionic conductivity, stability, specific capacitance, and operational characteristics. The fundamental operating mechanisms of EGTs and electric double layer transistors (EDLTs) based on electrostatic modulation and ECTs based on electrochemical doping are elucidated, along with prevalent device configurations. Furthermore, the review explores innovative strategies for regulating EGT performance through external stimuli, including electric fields, optical fields, and strain fields/piezopotentials. These multi-field regulation capabilities position EGTs as ideal candidates for building neuromorphic perception systems and energy-efficient intelligent hardware. Finally, we discuss the current challenges such as material stability, interfacial degradation, switching speed limitations, and integration density. Furthermore, we outline future research directions, emphasizing the need for novel hybrid electrolytes, advanced fabrication techniques, and holistic system-level integration to realize the full potential of EGTs in next-generation computing and bio-interfaced applications.
电解质门控晶体管(EGT)已成为神经形态计算和生物电子学中一个极具前景的平台,为克服冯·诺依曼架构的局限性提供了潜在解决方案。这篇全面的综述考察了EGT技术的最新进展,重点关注三个关键方面:材料、器件结构和外部场调控策略。我们系统地分析了多种电解质材料的发展和特性,包括液体电解质、聚合物基电解质和无机固态电解质,突出了它们对离子电导率、稳定性、比电容和工作特性的影响。阐明了基于静电调制的EGT和双电层晶体管(EDLT)以及基于电化学掺杂的电化学晶体管(ECT)的基本工作机制,以及常见的器件结构。此外,该综述探讨了通过外部刺激(包括电场、光场和应变场/压电势)来调节EGT性能的创新策略。这些多场调控能力使EGT成为构建神经形态感知系统和节能智能硬件的理想候选者。最后,我们讨论了当前面临的挑战,如材料稳定性、界面退化、开关速度限制和集成密度。此外,我们概述了未来的研究方向,强调需要新型混合电解质、先进制造技术和整体系统级集成,以实现EGT在下一代计算和生物接口应用中的全部潜力。