Zhang Song, Ji Feiyang, Huang Wei, Zhang Chitengfei, Wang Chongjie, Li Cuicui, Xu Qingfang, Tu Rong
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Hubei Longzhong Laboratory, No.101 Luming Road, Xiangyang 441000, China.
Materials (Basel). 2025 Sep 17;18(18):4341. doi: 10.3390/ma18184341.
The potential of silicon carbide (SiC) as a promising high-capacity and stable anode material is hindered by poor electronic conductivity and slow lithium diffusion kinetics. Here, we report a one-step laser chemical vapor deposition (LCVD) process to directly synthesize porous graphene@SiC heterostructures on carbon fiber substrates. This in situ method yields an integral, binder-free electrode architecture that enhances mechanical robustness against pulverization. A critical feature of this heterostructure is the built-in electric field at the graphene-SiC interface, which is revealed by theoretical calculations to significantly accelerate charge transport and lithium-ion diffusion. The resulting anode delivers a high reversible capacity of 668 mAh·g after 100 cycles at 0.1 A·g. More remarkably, a unique multi-stage activation mechanism is discovered, leading to an unprecedented capacity rebound to 735 mAh·g after cycling at rates up to 5 A·g. This activation process is observed to accelerate with increasing current density in the 0.1-2 A·g range. Furthermore, post-cycling analysis via XRD, TEM, and XPS confirms both the structural durability of the electrode and a reversible lithium intercalation mechanism, providing a critical foundation for the future design of high-performance LIB anodes.
碳化硅(SiC)作为一种有前景的高容量且稳定的负极材料,其潜力受到电子导电性差和锂扩散动力学缓慢的阻碍。在此,我们报道一种一步激光化学气相沉积(LCVD)工艺,可在碳纤维基底上直接合成多孔石墨烯@SiC异质结构。这种原位方法产生一种整体的、无粘结剂的电极结构,增强了抗粉化的机械稳健性。这种异质结构的一个关键特征是石墨烯 - SiC界面处的内建电场,理论计算表明该电场能显著加速电荷传输和锂离子扩散。所得负极在0.1 A·g下循环100次后具有668 mAh·g的高可逆容量。更值得注意的是,发现了一种独特的多阶段活化机制,导致在高达5 A·g的倍率下循环后,容量前所未有的反弹至735 mAh·g。观察到在0.1 - 2 A·g范围内,这种活化过程随着电流密度的增加而加速。此外,通过XRD、TEM和XPS进行的循环后分析证实了电极的结构耐久性以及可逆的锂嵌入机制,为高性能锂离子电池负极的未来设计提供了关键基础。