Yeh Zhi-Yu, Mushyakhwo Kusum, Ni Nian-Tong, Lo Pei-Hsin, Lin Chuen-Fu, Nai Yu-Shin
Department of Entomology, National Chung Hsing University, Taichung, 40227, Taiwan.
International Doctoral Program in Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan.
BMC Genomics. 2025 Sep 26;26(1):843. doi: 10.1186/s12864-025-12018-6.
The Purpureocillium lilacinum NCHU-NPUST-175 (Pl-NCHU-NPUST-175) strain has been previously reported as an entomopathogenic fungus (EPF) with potential for controlling Forcipomyia taiwana (little black mosquito). In this study, genome sequencing of Pl-NCHU-NPUST-175 was performed via long-read sequencing (Oxford Nanopore Technologies, ONT). The comparative genomic analysis was conducted to identify isolate- and species-specific DNA regions for developing markers for rapid molecular identification, in order to detect the fungus in an environment and to confirm species identity before practical field applications.
The genome assembly of Pl-NCHU-NPUST-175 is 36.55 Mb, consisting of 13 contigs with a GC content of 58.64%. The largest contig of the Pl-NCHU-NPUST-175 genome was 6.79 Mb, and the N50 value was 4.08 Mb. The genome contains 14,069 putative protein-coding genes, with a gene density of 384.90 genes per Mb and a median number of three exons per gene. Additionally, one mitogenome, Pl-NCHU-NPUST-175, was assembled with a size of 0.23 Mb and contained 16 protein-coding genes. In the Pl-NCHU-NPUST-175 genome, repeat regions accounted for 3.70% of the genome. Most repetitive sequences exhibit a nucleotide sequence divergence of less than 30%. Phylogenetic analysis revealed that Pl-NCHU-NPUST-175 is most closely related to other P. lilacinum strains. To identify distinctive genomic regions (DGRs), a comparative genomics analysis was conducted between Pl-NCHU-NPUST-175, P. takamizusanense and P. lilacinum. A total of 1,154 unaligned fragments were identified by genome-wide alignment, ten DGRs were randomly selected for specific primer design, and the specificity of the primer sets was tested. The results showed that all primer sets could serve as specific molecular markers for Pl-NCHU-NPUST-175. Among the ten primer sets, three primer sets were selected for the soil-sample detection test. The qualitative PCR results indicate that all three isolate-specific primer sets (pl_1, pl_8, and pl_10) detected 10 conidia g soil in the natural soil samples for up to 14 days. However, qPCR improve the accuracy and sensitivity of detecting Low fungal concentrations 10 conidia g soil in complex environmental matrices like soil. These findings suggest that these primers set have potential for future applications in monitoring specific fungal isolates in the field over period of time.
The genome sequence of Pl-NCHU-NPUST-175 was decoded and compared with those of closely related isolates and species. Based on a developed comparative genomics approach, we highlight the feasibility of developing specific molecular markers of EPF, and this method could be further applied to commercialize EPF products to address sustainability in the natural environment.
淡紫紫孢菌NCHU-NPUST-175(Pl-NCHU-NPUST-175)菌株先前已被报道为一种具有控制台湾蠛蠓(小黑蚊)潜力的昆虫病原真菌(EPF)。在本研究中,通过长读长测序(牛津纳米孔技术公司,ONT)对Pl-NCHU-NPUST-175进行了基因组测序。进行了比较基因组分析,以鉴定分离株和物种特异性的DNA区域,用于开发快速分子鉴定标记,以便在环境中检测该真菌,并在实际田间应用前确认物种身份。
Pl-NCHU-NPUST-175的基因组组装大小为36.55 Mb,由13个重叠群组成,GC含量为58.64%。Pl-NCHU-NPUST-175基因组的最大重叠群为6.79 Mb,N50值为4.08 Mb。该基因组包含14,069个推定的蛋白质编码基因,基因密度为每兆碱基384.90个基因,每个基因的外显子中位数为3个。此外,还组装了一个线粒体基因组Pl-NCHU-NPUST-175,大小为0.23 Mb,包含16个蛋白质编码基因。在Pl-NCHU-NPUST-175基因组中,重复区域占基因组的3.70%。大多数重复序列的核苷酸序列差异小于30%。系统发育分析表明,Pl-NCHU-NPUST-175与其他淡紫紫孢菌菌株关系最为密切。为了鉴定独特的基因组区域(DGRs),对Pl-NCHU-NPUST-175、高山紫孢菌和淡紫紫孢菌进行了比较基因组分析。通过全基因组比对共鉴定出1154个未比对片段,随机选择10个DGRs进行特异性引物设计,并测试了引物组的特异性。结果表明,所有引物组均可作为Pl-NCHU-NPUST-175的特异性分子标记。在这10个引物组中,选择了3个引物组进行土壤样品检测试验。定性PCR结果表明,所有3个分离株特异性引物组(pl_1、pl_8和pl_10)在自然土壤样品中可检测到每克土壤10个分生孢子,持续14天。然而,qPCR提高了在土壤等复杂环境基质中检测低真菌浓度(每克土壤10个分生孢子)的准确性和灵敏度。这些发现表明,这些引物组在未来一段时间内具有在田间监测特定真菌分离株的应用潜力。
对Pl-NCHU-NPUST-175的基因组序列进行了解码,并与密切相关的分离株和物种的基因组序列进行了比较。基于所开发的比较基因组学方法,我们强调了开发昆虫病原真菌特异性分子标记的可行性,该方法可进一步应用于将昆虫病原真菌产品商业化,以实现自然环境中的可持续性。