Suppr超能文献

用于预测内镜下第三脑室造瘘术成功率的机器学习——一项系统综述和荟萃分析

Machine learning for endoscopic third ventriculostomy success prediction-a systematic review and meta-analysis.

作者信息

Łajczak Anna, Silva Yasmin Picanço, Łajczak Paweł

机构信息

Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.

Healthcare Institution of South Iceland, Selfoss, Iceland.

出版信息

Childs Nerv Syst. 2025 Sep 29;41(1):297. doi: 10.1007/s00381-025-06962-7.

Abstract

BACKGROUND

Endoscopic third ventriculostomy (ETV) is a common treatment for pediatric obstructive hydrocephalus, but predicting its success remains challenging. Traditional predictive tools, such as the Endoscopic Third Ventriculostomy Success Score (ETVSS) and logistic regression (LR) models, are widely used; however, recent advancements in machine learning (ML) have shown promise in improving prediction accuracy. This systematic review and meta-analysis aim to evaluate the effectiveness of ML models in predicting ETV success and compare them to traditional models.

METHODS

A systematic search across five databases was performed. Authors searched for studies, which used ML algorithms to predict ETV success. This review included studies included studies that reported the area under the receiver operating characteristic curve (AUC) for model performance. ETV success was considered the absence of ETV failure criteria in 6 months after procedure: either recurrence of hydrocephalus symptoms, repeated surgery, or mortality.

RESULTS

A total of four studies involving 3087 pediatric patients were included. The overall pooled AUC for ML models was 0.63 (95% CI 0.56-0.70), with significant heterogeneity (I = 96%). Subgroup analysis revealed that models including imaging data had a slightly higher AUC (0.74, 95% CI 0.61-0.88). No significant differences were found between ML models and traditional tools like ETVSS or LR models.

CONCLUSIONS

ML models show moderate potential for predicting ETV success but do not outperform traditional tools like ETVSS and LR models in clinical application. High heterogeneity and methodological limitations suggest that further research is needed to optimize and validate ML algorithms.

摘要

背景

内镜下第三脑室造瘘术(ETV)是小儿梗阻性脑积水的常见治疗方法,但预测其成功率仍具有挑战性。传统的预测工具,如内镜下第三脑室造瘘术成功评分(ETVSS)和逻辑回归(LR)模型,被广泛使用;然而,机器学习(ML)的最新进展显示出提高预测准确性的潜力。本系统评价和荟萃分析旨在评估ML模型在预测ETV成功率方面的有效性,并将其与传统模型进行比较。

方法

对五个数据库进行了系统检索。作者搜索了使用ML算法预测ETV成功率的研究。本综述纳入了报告模型性能的受试者操作特征曲线下面积(AUC)的研究。ETV成功被定义为术后6个月内不存在ETV失败标准:脑积水症状复发、再次手术或死亡。

结果

共纳入四项涉及3087例儿科患者的研究。ML模型的总体合并AUC为0.63(95%CI 0.56-0.70),具有显著异质性(I=96%)。亚组分析显示,包含影像数据的模型AUC略高(0.74,95%CI 0.61-0.88)。ML模型与ETVSS或LR模型等传统工具之间未发现显著差异。

结论

ML模型在预测ETV成功率方面显示出中等潜力,但在临床应用中并不优于ETVSS和LR模型等传统工具。高度的异质性和方法学局限性表明,需要进一步研究以优化和验证ML算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29e4/12479695/795b988c716b/381_2025_6962_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验