Suppr超能文献

中国儿童睫状肌麻痹验光的快速准确预测:机器学习模型的开发与验证

Rapid and accurate prediction of cycloplegic refraction in Chinese children: development and validation of machine learning models.

作者信息

Liu Yujia, Shang Jianmin, Wang Yuliang, Zhu Xingxue, Ye Chaoying, Wang Chongyang, Qu Xiaomei

机构信息

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.

NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.

出版信息

J Glob Health. 2025 Oct 17;15:04281. doi: 10.7189/jogh.15.04281.

Abstract

BACKGROUND

Uncorrected refractive error affects approximately 19 million children globally, resulting in preventable vision loss. However, cycloplegic refraction, the gold standard for assessment, remains largely inaccessible in low-resource settings. We aimed to develop and validate machine learning (ML) prediction models based on non-cycloplegic results to estimate the cycloplegic spherical equivalent (cSE).

METHODS

The internal dataset comprised refractive measurements and ocular biometric parameters collected from 3035 children's eyes at the Eye & ENT Hospital of Fudan University, the research team's primary hospital. The external validation sets consisted of 160 and 120 eyes, respectively, from two different centres. Based on ocular biometric parameters and non-cycloplegic spherical equivalent, we employed single and stacked ML models to predict cSE. We used regression metrics and agreement analysis between the predicted spherical equivalent (pSE) and cSE to assess prediction performances. We also created segmented models based on age and refractive groups. The generalisation performance of the models was assessed using evaluation metrics as well as correlation and agreement analyses in the external validations.

RESULTS

The stacked overall model outperformed single-algorithm models, achieving an R of 0.982 and a mean absolute error(MAE) of 0.360D. The MAE in segmented models ranged from 0.239D to 0.466D in the middle-aged groups and 0.226D to 0.420D in the high-aged groups, with better 95% limits of agreement between pSE and cSE than those in the overall model. External validation showed MAEs of 0.284D and 0.306D for the two datasets, with significant correlations, but lack of agreement between pSE and cSE.

CONCLUSIONS

The ML models enable cSE prediction based on non-cycloplegic refraction data and ocular biometric parameters, providing a fast, practical method for estimating refractive error. Multicenter validation and targeted oversampling of rare refractive subgroups are required, however, before robust clinical implementation of the models.

摘要

背景

未矫正的屈光不正影响着全球约1900万儿童,导致可预防的视力丧失。然而,作为评估金标准的睫状肌麻痹验光,在资源匮乏地区仍大多无法实现。我们旨在开发并验证基于非睫状肌麻痹验光结果的机器学习(ML)预测模型,以估计睫状肌麻痹等效球镜度(cSE)。

方法

内部数据集包含从复旦大学附属眼耳鼻喉科医院(研究团队的主要医院)收集的3035只儿童眼睛的屈光测量数据和眼部生物特征参数。外部验证集分别由来自两个不同中心的160只和120只眼睛组成。基于眼部生物特征参数和非睫状肌麻痹等效球镜度,我们采用单模型和堆叠式ML模型来预测cSE。我们使用回归指标以及预测等效球镜度(pSE)与cSE之间的一致性分析来评估预测性能。我们还根据年龄和屈光组创建了分段模型。使用评估指标以及外部验证中的相关性和一致性分析来评估模型的泛化性能。

结果

堆叠式总体模型优于单算法模型,R值为0.982,平均绝对误差(MAE)为0.360D。分段模型中的MAE在中年组中为0.239D至0.466D,在老年组中为0.226D至0.420D,pSE与cSE之间的95%一致性界限比总体模型中的更好。外部验证显示两个数据集的MAE分别为0.284D和0.306D,具有显著相关性,但pSE与cSE之间缺乏一致性。

结论

ML模型能够基于非睫状肌麻痹验光数据和眼部生物特征参数预测cSE,为估计屈光不正提供了一种快速、实用的方法。然而,在模型稳健地应用于临床之前,需要进行多中心验证以及对罕见屈光亚组进行有针对性的过采样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a997/12532443/314519502628/jogh-15-04281-F1.jpg

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验