Suppr超能文献

Clinically interpretable electrovectorcardiographic machine learning criteria for the detection of echocardiographic left ventricular hypertrophy.

作者信息

De la Garza-Salazar Fernando, Egenriether Brian

机构信息

Independent Researcher, Monterrey, México.

Tecnológico de Monterrey, Escuela de Medicina, Avenida Ignacio Morones Prieto, Sertoma, Monterrey, Nuevo León, México.

出版信息

PLoS One. 2025 Oct 17;20(10):e0334829. doi: 10.1371/journal.pone.0334829. eCollection 2025.

Abstract

Echocardiographic left ventricular hypertrophy (Echo-LVH) is frequently underdetected by traditional electrocardiogram (ECG) criteria due to limited sensitivity. We investigated whether integrating ECG with vectorcardiography (VCG) using a clinically interpretable machine learning algorithm (C5.0) could improve diagnostic performance. We analyzed ECG and VCG data from 664 patients, 42.8% of whom had Echo-LVH. The study introduced three new criteria-Marcos VCG, Marcos VCG-ECG, and Marcos VCG-ECGsp-named in honor of the software used for VCG synthesis, and compared their diagnostic performance against 23 established ECG criteria, including Cornell voltage, Peguero-Lo Presti, and Sokolow-Lyon. Marcos VCG-ECGsp, optimized for higher specificity, was included to evaluate trade-offs in performance. Validation was performed using train/test split and 10-fold cross-validation. Marcos VCG-ECG achieved higher AUC than Cornell voltage in both training (0.81 vs. 0.68, p < 0.0001) and testing (0.78 vs. 0.69, p = 0.04). The new criteria also showed superior sensitivity compared to Peguero-Lo Presti, the most sensitive traditional criterion (73.1%, 62.4%, 55.9% vs. 30.1%, p < 0.0001). While specificity was lower than Cornell (81.1% vs. 96.4%, p = 0.017), it remained acceptable, reflecting a clinically relevant trade-off favoring detection over false positives. In conclusion, integrating ECG with VCG through machine learning enances Echo-LVH detection, delivering superior sensitivity while preserving specificity. The proposed criteria are clinically interpretable, highlight the novelty of combining two electrical spectra, and hold potential to impact routine diagnostic practice.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b37/12533915/4004d8ea7357/pone.0334829.g001.jpg

相似文献

3
Peguero-Lo Presti criteria for the diagnosis of left ventricular hypertrophy: A systematic review and meta-analysis.
PLoS One. 2021 Jan 29;16(1):e0246305. doi: 10.1371/journal.pone.0246305. eCollection 2021.
5
6
Diagnostic and prognostic value of ECG-predicted hypertension-mediated left ventricular hypertrophy using machine learning.
J Hypertens. 2025 Aug 1;43(8):1327-1338. doi: 10.1097/HJH.0000000000004034. Epub 2025 May 23.
7
Peguero-Lo Presti criteria for diagnosis of left ventricular hypertrophy: a cardiac magnetic resonance validation study.
J Cardiovasc Med (Hagerstown). 2020 Jun;21(6):437-443. doi: 10.2459/JCM.0000000000000964.
8
The association between ECG criteria and Echo criteria for left ventricular hypertrophy in a general Chinese population.
Ann Noninvasive Electrocardiol. 2021 Sep;26(5):e12880. doi: 10.1111/anec.12880. Epub 2021 Jul 26.
10
A meta-analytic evaluation of the diagnostic accuracy of the electrocardiographic Peguero-Lo Presti criterion for left ventricular hypertrophy.
J Clin Hypertens (Greenwich). 2020 Jul;22(7):1145-1153. doi: 10.1111/jch.13923. Epub 2020 Jul 1.

本文引用的文献

1
Searching for the Best Machine Learning Algorithm for the Detection of Left Ventricular Hypertrophy from the ECG: A Review.
Bioengineering (Basel). 2024 May 15;11(5):489. doi: 10.3390/bioengineering11050489.
2
Exploring vectorcardiography: An extensive vectocardiogram analysis across age, sex, BMI, and cardiac conditions.
J Electrocardiol. 2024 Jan-Feb;82:100-112. doi: 10.1016/j.jelectrocard.2023.12.004. Epub 2023 Dec 13.
4
ISE/ISHNE expert consensus statement on the ECG diagnosis of left ventricular hypertrophy: The change of the paradigm.
Ann Noninvasive Electrocardiol. 2024 Jan;29(1):e13097. doi: 10.1111/anec.13097. Epub 2023 Nov 24.
5
Peguero-Lo Presti criteria modified by body surface area for the electrocardiographic diagnosis of left ventricular hypertrophy in Thai patients.
Asian Biomed (Res Rev News). 2021 Apr 30;15(2):101-107. doi: 10.2478/abm-2021-0012. eCollection 2021 Apr.
6
Left ventricular hypertrophy detection using electrocardiographic signal.
Sci Rep. 2023 Feb 13;13(1):2556. doi: 10.1038/s41598-023-28325-5.
7
Automatic Detection of Left Ventricular Dilatation and Hypertrophy from Electrocardiograms Using Deep Learning.
Int Heart J. 2022 Sep 30;63(5):939-947. doi: 10.1536/ihj.22-132. Epub 2022 Sep 14.
8
Deep learning assessment of left ventricular hypertrophy based on electrocardiogram.
Front Cardiovasc Med. 2022 Aug 11;9:952089. doi: 10.3389/fcvm.2022.952089. eCollection 2022.
9
Artificial Intelligence-Enabled Model for Early Detection of Left Ventricular Hypertrophy and Mortality Prediction in Young to Middle-Aged Adults.
Circ Cardiovasc Qual Outcomes. 2022 Aug;15(8):e008360. doi: 10.1161/CIRCOUTCOMES.121.008360. Epub 2022 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验